Использование теплоизоляционных плит

Панели из полиизоциануратной пены

PIR, polyiso или ISO — это термореактивный пластиковый продукт, обычно производимый в виде пены и используемый в качестве жесткой теплоизоляционной панели, чаще всего с облицовкой из алюминиевой фольги. Тепловые характеристики оцениваются в 6-6,5 на дюйм, но не рассчитывайте на это, если ваши зимы холодные.

Большинство изоляционных продуктов на самом деле работают немного лучше при холоде, но полиизоцианурат нарушает это правило. Приблизительно при 15 ° C его производительность начинает ухудшаться и ухудшается. К тому времени, когда вы дойдете до -20 градусов по Цельсию, его показатели снижаються. Это может быть отличным продуктом для использования, в тепле, что очень странно говорить о теплоизоляционном продукте.

Утеплители, теплоизоляция, звукоизоляция, ОСБ

Теплоизоляция, выполненная из современных, высококачественных материалов, является сегодня требованием энергосберегающего строительства. Вкладывая в строительство значительные средства, мы хотим быть уверенными в том, что будем платить за обогрев дома, а не воздуха вокруг него. Именно поэтому так необходима хорошая теплоизоляция. Деньги, вложенные в эффективную изоляцию, возвращаются уже через несколько лет в результате уменьшения расходов на отопление.

Существуют теплоизоляционные материалы изготавливаемые из органического и неорганического сырья, плоские, рыхлые или сыпучие по форме, жёсткие или малоплотные. К органическим типам материалов относятся пенополистиролы, пенополиуретаны, спененные полиэтилены, древесно-волокнистые плиты и др. К неорганическим — базальтовая и стеклянная вата, перлит, керамзит, пеностекло и др. Самые распространённые теплоизоляционные материалы — это пенополистиролы и минеральная вата, к которой относится базальтовая и стекловолоконная.

Область применения теплоизоляционных материалов обширна. В первую очередь это утепление домов, в частности утепление стен домов, фасадов и крыши дома. Также теплоизоляция используются при строительстве дорог, трубопроводов, промышленного оборудования, воздуховодов и судостроения.

Основное различие теплоизоляционных материалов, используемых при утеплении домов, заключается в плотности. Самый малоплотный материал предпочтительнее применять в горизонтальных ненагружаемых конструкциях. Материал для утепления стен домов зависит от типа фасада. Различают основные виды — это вентилируемые, штукатурные фасады и слоистая кладка. Во всех трёх случаях плотность утеплителя варьируется. Например, для утепления фасада дома с штукатурной отделкой будут использоваться теплоизоляционные плиты плотностью от 120 кг/куб.м. для минеральной ваты и 25 кг/куб.м. для пенополистирола. В утеплении крыши дома тоже играет роль её тип. Различают плоскую (инверсионную) кровлю и скатную кровлю. Для утепления плоской кровли необходимы более плотные (жесткие) плиты нежели для утепления скатной кровли. В последнем случае утеплитель заполняет межстропильное пространство.

Теплоизоляционные материалы по сути также являются звукоизоляцией. Но для защиты от излишних децибел в линейке основных производителей теплоизоляции присутствуют специализированные материалы. Значения звукоизоляции зависят не только от применяемого материала, но и от устройства конструкции. К примеру, дополнительный воздушный зазор между двумя слоями звукоизоляции значительно увеличивает показатели шумовой защиты.

Изоляционная плита из полиизоцианурата с жесткой пеной, облицованная алюминиевой фольгой

Новость о том, что значение теплопроводности  Polyiso исчезает, когда вам это нужно больше всего, до сих пор не вошла в строительную отрасль, поэтому вы все еще видите, что его время от времени устанавливают на наружных стенах в холодном климате. Он не обеспечит той тепловой защиты, как вы думаете, в разгар зимы, и может привести к повреждению от влаги из-за недостаточной проницаемости.

Изоляционные плиты Polyiso являются наиболее широко используемой коммерческой кровлей с низким уклоном. Являясь универсальным выбором для коммерческого применения кровли, polyiso спроектирован как часть любой модифицированной битумной, наплавляемой или однослойной кровельной системы. Продукты Polyiso имеют торцевую облицовку для высокой прочности и мытья полов, так и для адгезивного крепления Продукт также предназначен для работы с механическими креплениями, возможно, под мембранами.

Изоляция панелей из пенопласта Polyiso:

В реальных условиях использование панелей из пенополиуретана для изоляции из полиизо, вероятно, является плохим выбором, если температура зимой опускается ниже — 10 ° C.

Сфера применения рулонного утеплителя

Рулонные утеплители применяются для теплоизоляции вертикальных и горизонтальных поверхностей. Фольгированный материал незаменим для создания теплоизоляции в банных помещениях, т. к. он хорошо сохраняет тепло и обладает теплоотражающими свойствами. А также данный материал нашёл широкое применение для теплоизоляции отдельных конструкций, стыков, в труднодоступных местах.

Рассмотрим основные способы использования рулоных теплоизоляторов.

Рулонный теплоизолятор для стен

Рулонный утеплитель для стен может применяться как теплоизоляционный материал, наносимый под декоративную отделку, в том числе под обои.

Технология применения очень проста:

  • самоклеющийся материал наклеивается на заранее подготовленную, выровненную и очищенную от мусора и старой отделки, стену;
  • на слой теплоизолятора наносится клеящий состав на основе цемента, по свойствам напоминающий жидкую штукатурку;
  • после застывания клеящего состава можно приступать к поклейке обоев.

Использование такого материала под обои значительно повысит теплосохраняющие свойства стен, а также их шумоизоляцию.

Рулонный теплоизолятор для пола

Применяется в качестве подложки под различные виды декоративных покрытий пола. Обладает не только теплоизолирующими свойствами, но и придаёт полу «мягкость», устраняет скрипы и звуки при усадке и движении напольного покрытия.

В некоторых случаях для теплоизоляции пола можно использовать фольгированный теплоизолятор, это повысит сохранение тепла, однако и стоимость материалов усиленных фольгой на 30–60% дороже.

Технология производства работ по утеплению пола при помощи вспененного полимера в рулонах очень проста:

  • материал клеится на деревянный пол или бетонную стяжку при помощи клеевого состава или самоклеющихся свойств;
  • разравнивается, чтобы не было «пузырей»;
  • сверху укладывается напольное покрытие.

К преимуществам такого теплоизолятора относится простота монтажа, отсутствие мусора, долговечность и экологическая безопасность. При выборе рулонного теплоизолятора для пола стоит запомнить, что чем «мягче» напольное покрытие, тем утеплитель должен быть плотнее.

Другими словами под линолеум лучше использовать полимер с максимальной плотностью, иначе при ходьбе вы будете «утопать» в напольном покрытии, а вот под ламинат или паркет можно стелить полимер с любой плотностью.

Рулонный теплоизолятор для крыши

Подходит для теплоизоляции скатных и плоских крыш. Крыша, утеплённая таким материалом, будет тёплой на протяжении нескольких десятилетий. Уложить теплоизоляцию можно собственными силами, без привлечения высокооплачиваемых специалистов. Теплоизолятор располагается между элементами стропильной системы крыши, при этом не допускаются перекосы, образование волн и прочие дефекты.

Технология работ по устройству теплоизоляции кровли зависит от конструктивных особенностей. Наилучший вариант, когда теплоизоляция рассчитана ещё на стадии проектирования. В этом случае работы сводятся к тому, что рулонный материал раскатывается и клеится на внутреннюю поверхность кровли, сверху стелиться слой пароизоляционного материала и обустраивается конечная отделка, например, сайдинг, вагонка и т. д.

Изоляция и звукоизоляция

Жесткие пенопластовые теплоизоляционные плиты бывают разные. Тщательно выбирайте их, так как неправильный выбор может снизить эффективность изоляции и вызвать образование плесени и гниения в здании.

  • Полиизоцианурат (PIR)
  • Экструдированный полистирол (XPS)
  • Полистирол (EPS) или пенополистирол

При строительстве или реконструкции высокопроизводительной конструкции существует три основных вида жестких пенопластовых панелей, из которых вам придется выбирать: полиизоцианурат, известный как (PIR), экструдированный полистирол (XPS), часто называемый пенополистиролом, и вспененный полистирол. (EPS).

Прежде чем выбрать, вы должны точно знать, что вы ожидаете от этих панелей из пенополиуретана, чтобы убедиться, что вы покупаете и получаете выгоду. Эти три продукта, которые мы здесь сравниваем, основаны на нефти, но их характеристики, производительность и экологические последствия значительно различаются. В качестве альтернативы, в зависимости от области применения и бюджета, вы всегда можете выбрать натуральные продукты такие как минеральную вату.

Материал изготовления волокон: базальт, стекло и шлак

В качестве сырья для изготовления минеральной ваты используют стекло, камень и шлак:

Шлаковая вата крайне редко используется для утепления крыши, ведь ее изготавливают из доменного шлака, а тот негативно влияет на здоровье человека.  Размер волокон около 16 мм, толщина от 4 до 12 мкм.

Еще один ее минус в том, что волокна очень ломкие, и брать такую вату в руки можно только в перчатках, и аккуратно. Зато за счет гибкости и равномерной толщины с самой ватой работать удобно. Ко всему шлаковата легкая и не создает нагрузки на конструкцию крыши.

У шлаковаты – воздушная структура, с теплопроводностью в пределах 0,046-0,048 Вт/мК

И из-за своей структуры она обладает высокой паропроницаемостью и гигроскопичностью, а потому при таком утеплении нужно особое внимание уделять изоляции

Пожаробезопасность вполне приемлемая, с допустимой температурой до 300°С, ведь дерево горит при температуре 320°С. Срок службы шлаковаты – 50 лет, если речь идет о качественной продукции.

Стекловату получают в процессе плавления кварцевого песка или стеклянных осколков. Стекло при высокой температуре раздувают на очень тонкие волокна, которые соединяют в виде ваты. Готовая стекловата имеет светло-желтый цвет и очень неприятна при касании и вдыхании, ведь речь идет о микроскопических осколках, которые остаются на нитях. Кроме того, связующим элементом таких волокон служат фенол-формальдегидные соединения, что тоже хорошо на здоровье домочадцев не скажется.

Теплопроводность у стекловаты находится в пределах 0,029-0,050 Вт/мК. Скажем, показатель довольно низкий, и все из-за слишком тонких волокон – от 4 мкм толщиной. Также из-за особой структуры она гигроскопична при высокой влажности воздуха. По плотности близка к шлаковате.

Наверняка вы знаете, что стекловату не любят из-за того, что ее мелкие осколки попадают на незащищенные кожу, глаза и вызывают сильное раздражение. Из-за таких особенностей в процессе монтажа надевают специальные очки, перчатки и защитный костюм. Но, если стекловата все-таки попадает на кожу, ее нужно быстро смыть холодной водой.

Если мы говорим о мансарде, то стекловата в плане пожаробезопасности вполне подходит, ее допустимая температура нагрева – 450°С. Поэтому этот материал вы вполне можете использовать, чтобы создать уютное и безопасное пространство. А чтобы не допустить мелкие колкие волокна, которые могут разноситься вентиляцией, обеспечьте надежные стыки пароизоляции.

А вот каменная вата куда более безопасна, ведь изготавливается из горной породы. Она бывает самых разных оттенков, от желто-коричневых до зеленоватых. Для производства используют базальт, который тоже расплавляют на мелкие волокна. В отличие от стеклянной, базальтовая вата более тяжелая, упругая и огнестойкая:

Базальтовые минплиты имеют теплопроводность 0,076-0,12 Вт/мК – это самый большой показатель. Толщина волокон до 12 мкм, а длина волокон – от 16 мм. У нее воздушная структура, высокая паропроницаемость и необходимость в защите от влаги.

И есть такая интересная особенность: чем плотнее вата, тем меньше распадается при работе и меньше мелкой пыли, и тем проще ее монтировать на вертикальные поверхности. Тем более, что качественная базальтовая вата не колется:

Базальтовые волокна – самая безопасный вид из всех минеральных. Если вы выбираете минеральную вату для утепления мансарды, вам нужна такая, которая не будет опираться при вставке и ее не нужно заламывать, чтобы запихнуть в нужное пространство:

Особенная ценность базальтовой ваты – в высокой пожаробезопасности, ведь температура нагрева здесь 600°С, что идеально подходит для деревянной стропильной системы. Благодаря утеплителю ее даже защищают от огня: просто укладываются в два слоя, и стропила полностью защищены от случайного возгорания. Кроме того, показатели звукоизоляции у базальтовой ваты одни из самых высоких.

По плотности базальтовая вата колеблется от максимально низкой до максимальной высокой, смотря какие задачи для нее ставят. И от плотности зависит ее цена. Если вы утепляете скатную крышу – подходит вата средней плотности. А прослужит базальтовая вата больше 50-ти лет.

К слову, по теплоизоляции вида ваты, и стеклянная, и каменная достаточно близки:

Обзор гигроскопичности теплоизоляции

Высокая гигроскопичность – это недостаток, который нужно устранять.

Гигроскопичность – способность материала впитывать влагу, измеряется в процентах от собственного веса утеплителя. Гигроскопичность можно назвать слабой стороной теплоизоляции и чем выше это значение, тем серьезнее потребуются меры для ее нейтрализации. Дело в том, что вода, попадая в структуру материала, снижает эффективность утеплителя. Сравнение гигроскопичности самых распространенных теплоизоляционных материалов в гражданской строительстве:

Наименование материала Влагопоглощение, % от массы
Минвата 1,5
Пенопласт 3
ППУ 2
Пеноизол 18
Эковата 1

Сравнение гигроскопичности утеплителей для дома показало высокое влагопоглощение пеноизола, при этом данная теплоизоляция обладает способностью распределять и выводить влагу. Благодаря этому, даже намокнув на 30%, коэффициент теплопроводности не уменьшается. Несмотря на то, что у минеральной ваты процент поглощения влаги низкий, она особенно нуждается в защите. Напитав воды, она удерживает ее, не давая выходить наружу. При этом способность предотвращать теплопотери катастрофически снижается.

Чтобы исключить попадание влаги в минвату используют пароизоляционные пленки и диффузионные мембраны. В основном полимеры устойчивы к длительному воздействию влаги, за исключением обычного пенополистирола, он быстро разрушается

В любом случае вода ни одному теплоизоляционному материалу на пользу не пошла, поэтому крайне важно исключить или минимизировать их контакт

Виды плит и их плюсы в утеплении дома

Сейчас на рынке много предложений, что выбрать, решать только вам.

Плиты теплоизоляционные на базальтовой основе считаются самым экологичными. Они же обладают самым низким показателем теплопроводности, отвечают главным требованиям пожаробезопасности, достаточно долговечны. Могут использоваться для отделки не только стен, но и кровли, а также перекрытий, так как хорошо поглощают звуки.

Базальтовые плиты

Минераловатные плиты тоже устойчивы к горению, обладают хорошей звукоизоляцией. Используются для внешней отделки и утепления фасадов. Однако обладают большим весом, низкой жесткостью и достаточно непрочны.

Плиты теплоизоляционные из пенопласта легкие и удобные в монтаже, устойчивы к влаге. Однако быстро разрушаются при воздействии высоких температур и не подходят для звукоизоляции. Используются только в частном строительстве.

Плиты теплоизоляционные из стекловолокна удобны в использовании для утепления неровных стен и труднодоступных участков, так как они упругие и легко сжимаются. Так как данный материал производиться из вторичного сырья (стекольная промышленность), существует необходимость строго следить за соблюдением правил монтажа. Только в этом случае будет обеспечена экологическая безопасность применения данного утеплителя.

Как мы видим, все теплоизоляционные материалы имеют определенные преимущества или недостатки.

Вывод. Какие использовать?

Чаще всего для утепления стен выбирают теплоизоляционные плиты из минеральной ваты или базальтовые. Если речь идет об утеплении каркасных конструкций, то здесь на первое место выходит пенополистирольные или стекловолокнистые утеплители.

Купить теплоизоляционные плиты в Петровиче =>>

Инструкция по устройству обрешетки

Технология устройства обрешетки для всех типов стен стандартная и состоит из следующих операций:

  • проводится разметка прохождения вертикальных и горизонтальных реек. Размеры ячеек по высоте и ширине должны быть на 2-5 см меньше, чтобы маты встали враспор и держались внутри конструкции только благодаря упругости утеплителя;
  • к стене крепится вертикальная обвязка. Брус размером 50х100 мм должен быть равным высоте помещения;
  • монтируются рейки горизонтальной обвязки. Размер бруска 50х50 мм, длина равна расстоянию между рейками вертикальной обвязки. Крепится к вертикальной стойке с помощью металлического уголка. Можно крепить непосредственно к стене;
  • устанавливаются вертикальные внутренние стойки. Шаг равен ширине утеплителя за минусом 2-5 см. Крепление проводится или уголками к горизонтальной обвязке, что проще, или к стене;
  • между стойками крепятся горизонтальные брусья. Не стоит забывать, что расстояние между ними должно быть чуть меньше размера плит утеплителя.

Принципиальная схема устройства обрешетки приведена ниже.

Схема обрешетки.

  • 1 — бруски обвязки обрешетки;
  • 2 — вертикальные бруски;
  • 3 — горизонтальные бруски;
  • 4 — металлические уголки на саморезах или гвоздях;
  • 5 — крепеж, фиксирующий обвязку к стене.

Завершается процесс устройства обрешетки обвязкой окон и дверей.

Подготовка стен изнутри в квартире

Использование базальтовой ваты для утепления стен максимально уменьшает объем подготовительных работ, так как под декоративную штукатурку, покраску и оклейку обоями нет необходимости устраивать обрешетку. Достаточно на поверхности утеплителя закрепить армирующую сетку из стекловолокна, а затем по высохшему клею нанести слой шпатлевки, с помощью которой будет получена ровная поверхность.

Обрешетка нужна только под керамическую плитку и панели ПВХ. Как ее правильно устроить, можно посмотреть на примере деревянных стен. Не следует забывать, что сами стены все равно необходимо подготовить. В этом случае технологические операции выполняются в следующей последовательности:

  • со стен снимаются выключатели, розетки, светильники, различные крепежные детали и т.д.;
  • удаляется старая отделка, а при необходимости (бухтит во многих местах) и штукатурка;
  • стена очищается от пыли и грязи, в том числе закопченных мест и масляных пятен;
  • заделываются мелкие и крупные щели.

Тщательно выравнивать поверхность нет необходимости — вата все скроет.

Подготовка фасада

Утепление стены дома снаружи базальтовой ватой начинается с подготовки фасада к теплоизоляционным работам. Они выполняются по следующей схеме:

  • со стен снимаются системы отвода дождевых вод, наличники дверного проема и окон, фонари и т.д. В результате стена должна быть абсолютно голая;
  • поверхность стен очищается от загрязнений и пыли, наплывов кладочного раствора;
  • проверяется вертикаль стены. При завале более 1,5 см на каждые 3 м проводятся работы по ее выравниванию (наносится слой выравнивающей штукатурки);
  • имеющиеся щели, трещины и отверстия заделываются ремонтным раствором. Как правильно заделать трещины, образовавшиеся из-за усадки здания, можно посмотреть в работе «Как подготовить стены к поклейке обоев»;
  • деревянные стены пропитываются антипиренами и антисептиками;
  • фасад из кирпича, бетона, газобетона, пеноблоков и т.д. обрабатывается грунтовкой глубокого проникновения в 2 слоя;
  • под обрешетку на стены крепится пароизоляционная мембрана (тип А) гладкой стороной к утеплителю. Для фиксации можно использовать скобы строительного степлера. Чтобы пароизоляция была качественной, мембраны должны заходить друг на друга на 15-20 см (внахлест), швы проклеиваются обычным скотчем. Многие специалисты игнорируют эту операцию. Но это тот случай, когда «кашу маслом не испортишь»;

Карниз под базальтовую вату.

Соединение карниза на внешнем углу.

При широком фундаменте можно обойтись без карниза. Базальтовые маты устанавливаются непосредственно на цоколь фундамента, покрытый предварительно рубероидом, для предотвращения попадания влаги в утеплитель снизу.

На закрепленную мембрану набивается обрешетка.

Эффективность многослойных конструкций

Плотность и теплопроводность

В настоящее время нет такого строительного материала, высокая несущая способность которого сочеталась бы с низкой теплопроводностью. Строительство зданий по принципу многослойных конструкций позволяет:

  • соответствовать расчётным нормам строительства и энергосбережения;
  • оставлять размеры ограждающих конструкций в пределах разумного;
  • уменьшить материальные затраты на строительство объекта и его обслуживание;
  • добиться долговечности и ремонтопригодности (например, при замене одного листа минеральной ваты).

Комбинация конструкционного материала и теплоизоляционного позволяет обеспечить прочность и снизить потерю тепловой энергии до оптимального уровня. Поэтому при проектировании стен при расчётах учитывается каждый слой будущей ограждающей конструкции.

Важно также учитывать плотность при строительстве дома и при его утеплении. Плотность вещества – фактор, влияющий на его теплопроводность, способность задерживать в себе основной теплоизолятор – воздух. Плотность вещества – фактор, влияющий на его теплопроводность, способность задерживать в себе основной теплоизолятор – воздух

Плотность вещества – фактор, влияющий на его теплопроводность, способность задерживать в себе основной теплоизолятор – воздух.

Расчёт толщины стен и утеплителя

Расчёт толщины стены зависит от следующих показателей:

  • плотности;
  • расчётной теплопроводности;
  • коэффициента сопротивления теплопередачи.

Согласно установленных норм, значение показателя сопротивления теплопередачи наружных стен должно быть не менее 3,2λ Вт/м •°С.

Расчёт толщины стен из железобетона и прочих конструкционных материалов представлен в таблице 2. Такие строительные материалы отличаются высокими несущими характеристиками, они долговечны, но в качестве тепловой защиты они неэффективны и требуют нерациональной толщины стены.

Таблица 2

Показатель Бетоны, растворно-бетонные смеси
Железобетон Цементно-песчаный раствор Сложный раствор (цементно-известково-песчаный) Известково-песчаный раствор
плотность, кг/куб.м 2500 1800 1700 1600
коэффициент теплопроводности, Вт/(м•°С) 2,04 0,93 0,87 0,81
толщина стен, м 6,53 2,98 2,78 2,59

Конструкционно-теплоизоляционные материалы способны подвергаться достаточно высоким нагрузкам, при этом значительно повышают теплотехнические и акустические свойства зданий в стеновых ограждающих конструкциях (таблица 3.1, 3.2).

Таблица 3.1

Показатель Конструкционно-теплоизоляционные м-лы
Пемзобетон Керамзитобетон Полистиролбетон Пено- и газобетон (пено- и газосиликат) Кирпич глиняный Силикатный кирпич
плотность, кг/куб.м 800 800 600 400 1800 1800
коэффициент теплопроводности, Вт/(м•°С) 0,68 0,326 0,2 0,11 0,81 0,87
толщина стен, м 2,176 1,04 0,64 0,35 2,59 2,78

Таблица 3.2

Показатель Конструкционно-теплоизоляционные м-лы
Кирпич шлаковый Силикатный кирпич 11-типустотный Кирпич силикатный 14-типустотный Сосна (поперечное расположение волокон) Сосна (продольное расположение волокон) Фанера клеёная
плотность, кг/куб.м 1500 1500 1400 500 500 600
коэффициент теплопроводности, Вт/(м•°С) 0,7 0,81 0,76 0,18 0,35 0,18
толщина стен, м 2,24 2,59 2,43 0,58 1,12 0,58

Значительно повысить теплозащиту зданий и сооружений позволяют теплоизоляционные строительные материалы. Данные таблицы 4 показывают, что наименьшие значения коэффициента теплопроводности имеют полимеры, минераловатные, плиты из природных органических и неорганических материалов.

Таблица 4

Показатель Теплоизоляционные м-лы
ППТ ПТ полистиролбетонные Маты минераловатные Плиты теплоизоляционные (ПТ) из минеральной ваты ДВП (ДСП) Пакля Листы гипсовые (сухая штукатурка)
плотность, кг/куб.м 35 300 1000 190 200 150 1050
коэффициент теплопро- водности, Вт/(м•°С) 0,39 0,1 0,29 0,045 0,07 0,192 1,088
толщина стен, м 0,12 0,32 0,928 0,14 0,224 0,224 1,152

Значения таблиц теплопроводности строительных материалов применяются при расчётах:

  • теплоизоляции фасадов;
  • общестроительной изоляции;
  • изоляционных материалов при устройстве кровли;
  • технической изоляции.

Задача выбора оптимальных материалов для строительства, конечно же, подразумевает более комплексный подход. Однако даже такие простые расчёты уже на первых этапах проектирования позволяют определить наиболее подходящие материалы и их количество.

Добавить комментарий

Ваш адрес email не будет опубликован. Обязательные поля помечены *

Adblock
detector