Теплопроводность строительных материалов
Содержание:
- Факторы, влияющие на величину теплопроводности
- Приложение А (обязательное)
- Что такое теплопроводность, термическое сопротивление и коэффициент теплопроводности
- Что такое теплопроводность и термическое сопротивление
- Описание и сравнение утеплителей
- Допустимые значения
- Коэффициенты теплопроводности алюминиевых, медных и никелевых сплавов
- Теплопроводность материалов: параметры
- Конструкционные материалы и их теплопроводность
- Понятие теплопроводности
Факторы, влияющие на величину теплопроводности
Теплопроводность материалов, используемых в строительстве, зависит от их параметров:
В начале измерения принимается начальное стационарное состояние температуры. Измерительный датчик и образец образуют две полубесконечные области. Линейная часть кривой параметризуется используемой емкостью плоского источника и теплоизоляционными свойствами обоих смежных полупространств.
В общем случае расчет значения теплопроводности может быть выражен уравнением. Во время практических измерений результаты измерений на эталонных материалах были применены для выбора оптимального интервала измерения и оптимальной выходной мощности источника тепла в отношении максимизации результатов измерений точно и воспроизводимости.
- Пористость – наличие пор в структуре материала нарушает его однородность. При прохождении теплового потока часть энергии передается через объем, занятый порами и заполненный воздухом. Принято за отсчетную точку принимать теплопроводность сухого воздуха (0,02 Вт/(м*°С)). Соответственно, чем больший объем будет занят воздушными порами, тем меньше будет теплопроводность материала.
- Структура пор – малый размер пор и их замкнутый характер способствуют снижению скорости теплового потока. В случае использования материалов с крупными сообщающимися порами в дополнение к теплопроводности в процессе переноса тепла будут участвовать процессы передачи тепла конвекцией.
- Плотность – при больших значениях частицы более тесно взаимодействуют друг с другом и в большей степени способствуют передаче тепловой энергии. В общем случае значения теплопроводности материала в зависимости от его плотности определяются либо на основе справочных данных, либо эмпирически.
- Влажность – значение теплопроводности для воды составляет (0,6 Вт/(м*°С)). При намокании стеновых конструкций или утеплителя происходит вытеснение сухого воздуха из пор и замещение его каплями жидкости или насыщенным влажным воздухом. Теплопроводность в этом случае значительно увеличится.
- Влияние температуры на теплопроводность материала отражается через формулу:
λ=λо*(1+b*t), (1)
Определение коэффициента теплопроводности строительных материалов с использованием нестационарного плоского измерительного оборудования. Нестационарное плоское измерительное оборудование благодаря своей конструкции обладает многими выгодными свойствами. В этом аппарате можно легко и быстро измерить значение коэффициента теплопроводности в случае любого строительного материала.
Само измерение длится всего несколько секунд, и поэтому можно определить значение коэффициента теплопроводности в зависимости от влажности испытуемого образца. Плоский датчик обеспечивает возможность определения коэффициента теплопроводности значительно неоднородных материалов. Требования, касающиеся размера выборки, по сравнению с другими методами существенно меньше. По этим причинам можно определить коэффициент теплопроводности даже в части строительных изделий, поскольку со стандартными образцами тепловые технические свойства могут сильно отличаться от свойств конечных продуктов. Точность измерения. Как и в случае любого метода измерения, даже в случае нестационарного плоского измерительного прибора наибольшая ошибка исходит из тестового образца. Если поверхность испытываемого образца неравномерна.
- Скорость измерения.
- В отличие от классических методов этот метод несравненно быстрее.
- Гибкость измерений.
Измерительное устройство может благодаря своим благоприятным свойствам применяться для определения измерения коэффициента теплопроводности в большом разнообразии материалов и изделий, например.
где, λо – коэффициент теплопроводности при температуре 0 °С, Вт/м*°С;
b – справочная величина температурного коэффициента;
t – температура.
Приложение А (обязательное)
Таблица А.1
Материалы (конструкции) |
Эксплуатационная влажность материалов w, % по массе, при условиях эксплуатации |
|
А |
Б |
|
1 Пенополистирол |
2 |
10 |
2 Пенополистирол экструзионный |
2 |
3 |
3 Пенополиуретан |
2 |
5 |
4 Плиты из резольно-фенолформальдегидного пенопласта |
5 |
20 |
5 Перлитопластбетон |
2 |
3 |
6 Теплоизоляционные изделия из вспененного синтетического каучука «Аэрофлекс» |
5 |
15 |
7 Теплоизоляционные изделия из вспененного синтетического каучука «Кфлекс» |
||
8 Маты и плиты из минеральной ваты (на основе каменного волокна и штапельного стекловолокна) |
2 |
5 |
9 Пеностекло или газостекло |
1 |
2 |
10 Плиты древесно-волокнистые и древесно-стружечные |
10 |
12 |
11 Плиты фибролитовые и арболит на портландцементе |
10 |
15 |
12 Плиты камышитовые |
10 |
15 |
13 Плиты торфяные теплоизоляционные |
15 |
20 |
14 Пакля |
7 |
12 |
15 Плиты на основе гипса |
4 |
6 |
16 Листы гипсовые обшивочные (сухая штукатурка) |
4 |
6 |
17 Изделия из вспученного перлита на битумном связующем |
1 |
2 |
18 Гравий керамзитовый |
2 |
3 |
19 Гравий шунгизитовый |
2 |
4 |
20 Щебень из доменного шлака |
2 |
3 |
21 Щебень шлакопемзовый и аглопоритовый |
2 |
3 |
22 Щебень и песок из вспученного перлита |
5 |
10 |
23 Вермикулит вспученный |
1 |
3 |
24 Песок для строительных работ |
1 |
2 |
25 Цементно-шлаковый раствор |
2 |
4 |
26 Цементно-перлитовый раствор |
7 |
12 |
27 Гипсоперлитовый раствор |
10 |
15 |
28 Поризованный гипсоперлитовый раствор |
6 |
10 |
29 Туфобетон |
7 |
10 |
30 Пемзобетон |
4 |
6 |
31 Бетон на вулканическом шлаке |
7 |
10 |
32 Керамзитобетон на керамзитовом песке и керамзитопенобетон |
5 |
10 |
33 Керамзитобетон на кварцевом песке с поризацией |
4 |
8 |
34 Керамзитобетон на перлитовом песке |
9 |
13 |
35 Шунгизитобетон |
4 |
7 |
36 Перлитобетон |
10 |
15 |
37 Шлакопемзобетон (термозитобетон) |
5 |
8 |
38 Шлакопемзопено- и шлакопемзогазобетон |
8 |
11 |
39 Бетон на доменных гранулированных шлаках |
5 |
8 |
40 Аглопоритобетон и бетон на топливных (котельных) шлаках |
5 |
8 |
41 Бетон на зольном гравии |
5 |
8 |
42 Вермикулитобетон |
8 |
13 |
43 Полистиролбетон |
4 |
8 |
44 Газо- и пенобетон, газо- и пеносиликат |
8 |
12 |
45 Газо- и пенозолобетон |
15 |
22 |
46 Кирпичная кладка из сплошного кирпича глиняного обыкновенного на цементно-песчаном растворе |
1 |
2 |
47 Кирпичная кладка из сплошного кирпича глиняного обыкновенного на цементно-шлаковом растворе |
1,5 |
3 |
48 Кирпичная кладка из сплошного кирпича глиняного обыкновенного на цементно-перлитовом растворе |
2 |
4 |
49 Кирпичная кладка из сплошного кирпича силикатного на цементно-песчаном растворе |
2 |
4 |
50 Кирпичная кладка из сплошного кирпича трепельного на цементно-песчаном растворе |
2 |
4 |
51 Кирпичная кладка из сплошного кирпича шлакового на цементно-песчаном растворе |
1,5 |
3 |
52 Кирпичная кладка из керамического пустотного кирпича плотностью 1400 кг м3 (брутто) на цементно-песчаном растворе |
1 |
2 |
53 Кирпичная кладка из пустотного кирпича силикатного на цементно-песчаном растворе |
2 |
4 |
54 Древесина |
15 |
20 |
55 Фанера клееная |
10 |
13 |
56 Картон облицовочный |
5 |
10 |
57 Картон строительный многослойный |
6 |
12 |
58 Железобетон |
2 |
3 |
59 Бетон на гравии или щебне из природного камня |
2 |
3 |
60 Раствор цементно-песчаный |
2 |
4 |
61 Раствор сложный (песок, известь, цемент) |
2 |
4 |
62 Раствор известково-песчаный |
2 |
4 |
63 Гранит, гнейс и базальт |
||
64 Мрамор |
||
65 Известняк |
2 |
3 |
66 Туф |
3 |
5 |
2 |
3 |
Ключевые слова: строительные материалы и изделия, теплофизические характеристики, расчетные значения, теплопроводность, паропроницаемость
Что такое теплопроводность, термическое сопротивление и коэффициент теплопроводности
Что же за «зверь» − теплопроводность? Если «расшифровать» сложное физическое определение, то можно получить следующее пояснение. Теплопроводность – свойство, которым обладают все строительные материалы. Характеризуется способностью отдавать тепло от нагретого предмета более холодному. Чем быстрее и интенсивнее это происходит, тем холоднее сам материал, соответственно, и строение из него нуждается в более интенсивном обогреве. Что не очень эффективно, особенно в денежном плане.
Для оценки величины теплопроводности используются специальные коэффициенты, которые уже заранее выявлены. ГОСТ 30290-94 контролирует методы определения подобной характеристики. Последняя нераздельно связана с термическим сопротивлением, которое означает сопротивление слоя теплоотдачи. В случае многослойного материала оно рассчитывается как сумма термических сопротивлений отдельных слоёв. Сама же эта величина равна отношению толщины слоя к коэффициенту.
ИСТ-1 – прибор для определения теплопроводности
Как видите, в определении теплопроводности нет ничего сложного и непонятного. Зная все подобные характеристики будущих материалов, можно составить «энергоэффективный бутерброд», но только при условии учёта всех обстоятельств, которые будут влиять на теплоэффективность каждого слоя конструкции.
Что такое теплопроводность и термическое сопротивление
При выборе строительных материалов для строительства необходимо обращать внимание на характеристики материалов. Одна из ключевых позиций — теплопроводность
Она отображается коэффициентом теплопроводности. Это количество тепла, которое может провести тот или иной материал за единицу времени. То есть, чем меньше этот коэффициент, тем хуже материал проводит тепло. И наоборот, чем выше цифра, тем тепло отводится лучше.
Диаграмма, которая иллюстрирует разницу в теплопроводности материалов
Материалы с низкой теплопроводностью используются для утепления, с высокой — для переноса или отвода тепла. Например, радиаторы делают из алюминия, меди или стали, так как они хорошо передают тепло, то есть имеют высокий коэффициент теплопроводности. Для утепления используются материалы с низким коэффициентом теплопроводности — они лучше сохраняют тепло. В случае если объект состоит из нескольких слоев материала, его теплопроводность определяется как сумма коэффициентов всех материалов. При расчетах, рассчитывается теплопроводность каждой из составляющих «пирога», найденные величины суммируются. В общем получаем теплоизоляцонную способность ограждающей конструкции (стен, пола, потолка).
Теплопроводность строительных материалов показывает количество тепла, которое он пропускает за единицу времени
Есть еще такое понятие как тепловое сопротивление. Оно отображает способность материала препятствовать прохождению по нему тепла. То есть, это обратная величина по отношению к теплопроводности. И, если вы видите материал с высоким тепловым сопротивлением, его можно использовать для теплоизоляции. Примером теплоизоляционных материалов может случить популярная минеральная или базальтовая вата, пенопласт и т.д. Материалы с низким тепловых сопротивлением нужны для отведения или переноса тепла. Например, алюминиевые или стальные радиаторы используют для отопления, так как они хорошо отдают тепло.
Факторы, влияющие на теплопроводность
Коэффициент теплопроводности материала зависит от нескольких факторов:
При повышении данного показателя взаимодействие частиц материала становится прочнее. Соответственно, они будут передавать температуру быстрее. А это значит, что с повышением плотности материала улучшается передача тепла.
Пористость вещества. Пористые материалы являются неоднородными по своей структуре. Внутри них находится большое количество воздуха. А это значит, что молекулам и другим частицами будет сложно перемещать тепловую энергию. Соответственно, коэффициент теплопроводности повышается.
Влажность также оказывает влияние на теплопроводность. Мокрые поверхности материала пропускают большее количество тепла. В некоторых таблицах даже указывается расчетный коэффициент теплопроводности материала в трех состояниях: сухом, среднем (обычном) и влажном.
Выбирая материал для утепления помещений, важно учитывать также условия, в которых он будет эксплуатироваться
Основные параметры, от которых зависит величина теплопроводности
Не все строительные материалы одинаково теплоэффективны. На это влияют следующие факторы:
Пористая структура материала говорит о том, что подобное строение неоднородно, а поры наполнены воздухом. Тепловые массы, перемещаясь через такие прослойки, теряют минимум своей энергии. Поэтому пенобетон именно с замкнутыми порами считается хорошим теплоизолятором. Замкнутые поры пенобетона наполнены воздухом, который по праву считается лучшим теплоизолятором
Повышенная плотность материала гарантирует более тесную взаимосвязь частиц друг с другом. Соответственно, уравновешивание температурного баланса происходит намного быстрее. По этой причине плотный материал обладает большим коэффициентом проводимости тепла. Поэтому железобетон считается одним из самых «холодных» материалов. Высокая плотность даёт хорошую прочность железобетону, но также и «обделяет» его теплоэффективностью
Влажность – злокачественный фактор, повышающий скорость прохождения тепла
Поэтому так важно качественно произвести гидроизоляцию необходимых узлов здания, грамотно организовать вентиляцию и использовать максимально инертные к намоканию строительные материалы.
«Холодно, холодно и сыро. Не пойму, что же в нас остыло…» Даже Согдиана знает о том, что сырость и холод − вечные соседи, от которых не спрячешься в тёплом свитере
Зная, что такое проводимость тепла, и какие факторы на неё влияют, можно смело пробовать применять свои знания для расчётов будущих строительных конструкций. Для этого нужно знать коэффициенты используемых материалов.
Описание и сравнение утеплителей
Сегодня потребитель может выбрать материал, свойства которого удовлетворяют его запросы в той или иной степени. От того, какой выбор вы делаете, зависит и монтаж утеплителя – справитесь ли вы с ним сами, или придется вызывать специалистов. Структура и текстура материалов имеет значение.
Основываясь на этом критерии можно выделить:
- Плиты – представляют собой стройматериал разной плотности и толщины, который изготовлен с помощью склеивания и прессования;
- Пеноблоки – сделаны из бетона, с включением специальных добавок, пористой структура получается вследствие химической реакции;
- Вата – реализуется в рулонах, имеет волокнистую структуру;
- Крошка или гранулы – сыпучий уплотнитель включает пеновещества различной фракции.
Свойства, стоимость и функционал материала – вот на что обращается внимание. Обычно на материале указывается, для какой именно поверхности он предназначен. Сырье для утеплителя может быть разным, а целом же оно бывает органическим и неорганическим
Сырье для утеплителя может быть разным, а целом же оно бывает органическим и неорганическим.
Органические утеплители делают на основе торфа, древесины и камыша. Неорганические утеплители – это минералы, вспененный бетон, вещества с содержанием асбеста и т.д. Стоит научиться оценивать и понимать свойства различных веществ.
Допустимые значения
Выполняя теплотехнический расчет наружной стены, учитывают также и регион, в котором будет располагаться дом:
- Для южных регионов с теплыми зимами и небольшими перепадами температур можно возводить стены небольшой толщины из материалов со средней степенью теплопроводности – керамический и глиняный обожженный одинарный и двойной, кирпич, пено- и газобетон большой плотности. Толщина стен для таких регионов может быть не более 20 см.
- В то же самое время для северных регионов целесообразнее и экономически выгоднее строить ограждающие стеновые конструкции средней и большой толщины из материалов с большим термическим сопротивлением – оцилиндрованное бревно, газо- и пенобетон средней плотности. Для таких условий возводят стеновые конструкции толщиной до 50–60 см.
- Для регионов с умеренным климатом и чередующимися по температурному режиму зимами подходят стены из материалов с высоким и средним значением термического сопротивления – газо- и пенобетон, брус, оцилиндрованное бревно среднего диаметра. В таких условиях толщина стеновых ограждающих конструкций с учетом утеплителей составляет не более 40–45 см.
Коэффициенты теплопроводности алюминиевых, медных и никелевых сплавов
Во время проведения расчетов связанных с цветными металлами и сплавами проектировщики применяют справочные материалы, размещенные в специальных таблицах.
Таблица теплопроводности алюминиевых сплавов
В них представлены материалы о теплопроводности цветных металлов и сплавов, кроме этих данных указана информация о химическом составе сплавов. Исследования проводили при температурах от 0 до 600 °С.
По информации собранной в этих табличных материалах видно то, что к цветным металлам, обладающим высокой теплопроводностью сплавы на основе магния и никель. К металлам, у которых низкая теплопроводность относят нихром, инвар и некоторые другие.
У большинства металлов хорошая теплопроводность, у одних она больше, у других меньше. К металлам с хорошей теплопроводностью относят золото, медь и некоторые другие. К материалам с низкой теплопроводностью относят олово, алюминий и пр.
Таблица теплопроводности сплавов никеля
Высокая теплопроводность может быть и достоинством, и недостатком. Все зависит от сферы применения. К, примеру, высокая теплопроводность хороша для кухонной посуды. Материалы с низкой теплопроводностью применяют для создания неразъемных соединений металлических деталей. Существуют целые семейства сплавов, выполненных на основе олова.
Теплопроводность материалов: параметры
Принято условное разделение материалов, применяемых в строительстве, на конструкционные и теплоизоляционные.
Конструкционные материалы применяются для возведения ограждающих конструкций (стен, перегородок, перекрытий). Они отличаются большими значениями теплопроводности.
Значения коэффициентов теплопроводности сведены в таблицу 1:
Нестационарные методы определения коэффициента теплопроводности используются, в частности, в тех случаях, когда применение метода сляба не может быть применено. Более низкая надежность измерения компенсируется, в частности, быстрой реализацией эксперимента. Оценка эксперимента быстро и может быть алгоритмизирована для онлайн-обработки компьютером.
В этой статье приведены данные по теплопроводности для выбора общих материалов. Теплопроводность измеряет способность материалов пропускать тепло через него через проводимость. Теплопроводность материала сильно зависит от состава и структуры. Вообще говоря, плотные материалы, такие как металлы и камень, являются хорошими проводниками тепла, в то время как вещества с низкой плотностью, такие как газ и пористая изоляция, являются плохими проводниками тепла. Теплопроводность материалов требуется для анализа при изучении теплообмена в системе.
Таблица 1
Подставляя в формулу (2) данные, взятые из нормативной документации, и данные из Таблицы 1, можно получить требуемую толщину стен для конкретного климатического района.
При выполнении стен только из конструкционных материалов без использования теплоизоляции их необходимая толщина (в случае использования железобетона) может достигать нескольких метров. Конструкция в этом случае получится непомерно большой и громоздкой.
В статье. В следующих таблицах показаны теплопроводности для обычных веществ. Строительные материалы или строительные материалы являются основным требованием в этот современный век технологии. Существует много типов строительных материалов, используемых для различных строительных работ.
Свойства строительных материалов
Для того чтобы материал рассматривался как строительный материал, он должен обладать необходимыми инженерными свойствами, подходящими для строительных работ. Эти свойства строительных материалов отвечают за его качество и мощность и помогают решать их применение.
Допускают возведение стен без использования дополнительного утепления, пожалуй, только пенобетон и дерево. И даже в этом случае толщина стены достигает полуметра.
Основной их диапазон лежит в пределах от 0,03 до 0,07 Вт/(м*°С). Наиболее распространенные материалы – это экструдированный пенополистирол, минеральная вата, пенопласт, стекловата, утепляющие материалы на основе пенополиуретана. Их использование позволяет значительно снизить толщину ограждающих конструкций.
Процесс передачи энергии от более нагретой части тела к менее нагретой называется теплопроводностью. Числовое значение такого процесса отражает коэффициент теплопроводности материала. Это понятие является очень важным при строительстве и ремонте зданий. Правильно подобранные материалы позволяют создать в помещении благоприятный микроклимат и сэкономить на отоплении существенную сумму.
Пористость строительных материалов
Пористость дает объем материала, занимаемого порами. Это отношение объема пор к объему материала. Пористость влияет на многие свойства, такие как теплопроводность, прочность, насыпная плотность, долговечность и т.д.
Долговечность строительных материалов
Свойство материала противостоять совместному действию атмосферных и других факторов известно как долговечность материала. Если материал более прочный, он будет полезен для более длительного срока службы. Стоимость обслуживания материала зависит от долговечности.
Конструкционные материалы и их теплопроводность
Теплопроводность вещества зависит от его плотности. Чем больше плотность вещества, тем выше теплопроводность. С увеличением пористости понижается ее коэффициент.
Низкий коэффициент теплопроводности материала определяет его хорошие теплоизоляционные качества.
Бетон
- Плотность: 500 кг/м³–2 500 кг/м³. Показатель зависит от состава смеси.
- Теплопроводность: 1,28–1,51 Вт/м*К. Показатель меняется в зависимости от консистенции бетона.
Бетонная смесь используется для заливки монолитного фундамента, а бетонные блоки – для закладки фундамента и возведения стен.
Железобетон
- Плотность: 2 500 кг/м3; бетонная смесь без вибрирования (применения глубинного вибратора) – 2 400 кг/м3.
- Теплопроводность: 1,69 Вт/м*К.
Лёгкий бетон на пористых заполнителях называют ячеистым бетоном.
Используют в качестве конструкционного и теплоизоляционного материала. Самые распространённые строительные материалы из бетона на пористых заполнителях — газобетон, пенобетон, керамзитобетон.
Данные материалы применяются для возведения многоэтажных, частных домов и для дополнительных пристроек: бань, гаражей, сараев.
Керамзитобетон
Пустотелые керамзитобетонные блоки делают с применением специальных форм, позволяющих при заливке смеси сформировать герметичные или сквозные пустоты.
Обладают меньшей прочностью по сравнению с полнотелыми керамзитобетонными блоками. Имеют меньшую теплопроводность, что делает их оптимальным материалом для возведения нетяжёлых конструкций с требуемой высокой теплоизоляцией.
- Плотность: 500 кг/м³–1 800 кг/м³.
- Теплопроводность: 0,14–0,66 Вт/м*К.
- Плотность: 300–800 кг/м3. Зависит от количества и размера пустот.
- Теплопроводность: 0,1–0,3 Вт/м*К.
Пенобетон
Изготавливается с применением пенообразующих добавок. Имеет пористую структуру.
- Плотность: 600–1 000 кг/м3.
- Теплопроводность: 0,1–0,38 Вт/м*К.
- Плотность: 500 кг/м³–1 900 кг/м³;
- Теплопроводность: 0,1–0,4 Вт/м*К.
Керамический кирпич
Изготавливается из обожжённой глины.
- Плотность: полнотелый – 1 600 кг/м³–1 900 кг/м³; пустотелый – 1 100 кг/м³–1 400 кг/м³;
- Теплопроводность: полнотелый – 0,56–0,86 Вт/м*К; пустотелый–0,35–0,41 Вт/м*К.
- Плотность: 1 100 кг/м³–1 900 кг/м³;
- Теплопроводность: 0,81–0,87 Вт/м*К.
Дерево
- Плотность: 150 кг/м³–2 100 кг/м³;
- Теплопроводность: 0,2–0,23 Вт/м*К.
Строительные конструкционные материалы, даже с низкой теплопроводностью, нуждаются в дополнительном утеплении.
Или почитайте ЗДЕСЬ о несъемной опалубке из пенополистирола.
Понятие теплопроводности
Она является интенсивной физической величиной, то есть величиной, которая описывает свойство материи, не зависящей от количества последней. Интенсивными величинами также являются температура, давление, электропроводность, то есть эти характеристики одинаковы в любой точке одного и того же вещества. Другой группой физических величин являются экстенсивные, которые определяются количеством вещества, например, масса, объем, энергия и другие.
Противоположной величиной для теплопроводности является теплосопротивляемость, которая отражает способность материала препятствовать переносу проходящего через него тепла. Для изотропного материала, то есть материала, свойства которого одинаковы во всех пространственных направлениях, теплопроводность является скалярной величиной и определяется, как отношение потока тепла через единичную площадь за единицу времени к градиенту температуры. Так, теплопроводность, равная одному ватту на метр-Кельвин, означает, что тепловая энергия в один Джоуль переносится через материал:
- за одну секунду;
- через площадь один метр квадратный;
- на расстояние один метр;
- когда разница температур на поверхностях, находящихся на расстоянии один метр друг от друга в материале, равна один Кельвин.
Понятно, что чем больше значение теплопроводности, тем лучше материал проводит тепло, и наоборот. Например, значение этой величины для меди равно 380 Вт/(м*К), и этот металл в 10 000 раз лучше переносит тепло, чем полиуретан, теплопроводность которого составляет 0,035 Вт/(м*К).