Чем отличается зануление от защитного заземления

Отличия заземления и зануления

Нередко пользователи задаются вопросом, а можно ли делать зануление вместо заземления, и как это отразится на безопасности потребителя. Отвечая на все подобные вопросы, следует исходить из определения, данного этому виду защиты в предыдущем разделе. Из него следует, что функционально зануление более эффективно, поскольку в короткий промежуток времени до срабатывания станционной автоматики оно выполняет ту же функцию, что и обычное ЗУ.

Заземление ПУЭ

Однако это не означает, что данный вид защиты должен применяться всегда и повсеместно. Дело в том, что у зануления имеется целый ряд недостатков, являющихся следствием особенностей его организации. Они проявляются в следующем:

Нулевой провод систем энергоснабжения имеет большую протяжённость и постоянно используется в активном режиме (как проводник, по которому протекает рабочий ток), вследствие чего со временем он может разрушиться;

Дополнительная информация. Указанное явление в технической литературе, а также в среде специалистов чаще всего упоминается как «отгорание нуля» (смотрите фото ниже).

Разрушение нуля

  • В отличие от заземления, при обустройстве которого нет зависимости от фазы защищаемой линии, при занулении должны соблюдаться определенные условия подсоединения защитного проводника;
  • По своим возможностям оно ограничено, поскольку может использоваться только в цепях с наглухо заземлённой нейтралью в сетях TN-C-S, TN-C, TN-S (при наличии N, PE, PEN проводников).

В линиях, где подключение организовано по схеме с изолированной нейтралью (в системах IT и ТТ), по своему назначению более подходящих для промышленных объектов, оно работать не сможет.

Также эти два вида преднамеренной защиты отличаются и по области своего применения, а именно:

  • Зануление обычно применяется в многоэтажных жилых домах, где практически невозможно организовать полноценное заземление;
  • Повторное заземление более часто используется на промышленных предприятиях, где согласно ТБ к безопасности персонала предъявляются повышенные требования;
  • Этот же тип защиты чаще всего применяется в быту (в загородных домах, в частности), где возможностей для обустройства защитного контура имеется предостаточно (смотрите фото ниже).

Защитное заземление в частном доме

Следует добавить, что защитное заземление и зануление отличаются ещё одним важным фактором. Дело в том, что в первом случае защита распространяется только на участок электрической цепи, на котором в аварийном режиме (при пробое изоляции) за счёт стекания тока в землю понизилось рабочее напряжение. При этом вся остальная часть снабжающей электричеством системы продолжает функционировать.

В отличие от действия заземляющего эффекта, при занулении данный участок линии электропитания отключается полностью.

Так что пытаться ответить на вопрос, в чём состоит их различие, будет не совсем корректно. Гораздо правильнее говорить о том, что заземление и зануление электроустановок должны использоваться совместно. Такое комбинированное их применение обеспечит более эффективную защиту от поражения током.

Подводя итог их сравнению, отметим, что принцип зануления состоит в превращении аварийной ситуации в однофазное замыкание, приводящее к срабатыванию станционной защитной автоматики. Заземление же, с одной стороны, представляет собой снижение потенциала опасной точки (уменьшение сопротивления заземлителя), а с другой – их выравнивание.

Оно в данном случае заключается в поднятии потенциала опоры со стоящим на ней человеком до уровня напряжения на заземлённом корпусе.

Два пути устройства заземления

Системы защиты и отвода напряжения подразделяют на:

Искусственные заземления предназначены непосредственно для защиты оборудования и человека. Для их устройства требуются горизонтальные и вертикальные стальные металлические продольные элементы (часто применяют трубы с диаметром до 5 см или уголки № 40 или № 60 длиной от 2,5 до 5 м). Тем самым отличается зануление и заземление. Разница состоит в том, что для выполнения качественного зануления требуется специалист.

Естественные заземлители используются в случае их ближайшего расположения рядом с объектом или жилым домом. В качестве защиты служат находящиеся в грунте трубопроводы, выполненные из металла. Нельзя использовать для защитной цели магистрали с горючими газами, жидкостями и тех трубопроводов, наружные стенки которых обработаны антикоррозионным покрытием.

Естественные объекты служат не только защите электроприборов, но и выполняют свое основное предназначение. К недостаткам такого подключения относится доступ к трубопроводам достаточного широкого круга лиц из соседних служб и ведомств, что создает опасность нарушения целостности соединения.

Что такое зануление электроприборов: возможности применения

Защитное зануление электроприборов используется, если смонтировать заземление невозможно. Такая ситуация может возникнуть в случае, если многоквартирный дом построен в советские времена. Своего контура у таких домов нет, а самостоятельно его устроить не получится.

Защитное зануление – это система, выполняющая отличную от заземления работу. Если второе призвано увести напряжение в землю, исключая возможность поражения электрическим током, то первое выполняется с целью создания (при пробое изоляции и попадания напряжения на корпус) короткого замыкания. В этом случае срабатывает автоматика и электричество отключается.

Источником опасности может стать любой незаземленный электроприбор

Защитное зануление требует правильного монтажа. Не стоит думать, что достаточно бросить перемычку с нулевого контакта внутри розетки на заземляющий. Это категорически запрещено. Рассмотрим ситуацию, когда уже «подгоревший» ноль подвергается нагрузке короткого замыкания, а автомат еще не успевает сработать. Ноль отгорает, исключив замыкание, но прибор остается под напряжением. Человек, надеясь на отсутствие электричества (света ведь нет, ноль отгорел) на ощупь продвигается к выходу и облокачивается на корпус бытового прибора, находящегося под напряжением. Исход ясен, не так ли?

Правильно  выполненное заземление вкупе с защитной автоматикой – залог спокойствия проживающих в доме или квартире

Зануление и заземление – в чем разница

Обе системы защиты выполняют одинаковую функцию – защищают домочадцев от поражения электрическим током при касании оголенного провода или неисправных электроустановок. Разница заключается в том, что зануление моментально обесточивает помещение при опасном контакте, а заземление отводит всю «опасность» в землю.

Отличие по области применения

Основное правило, которые должны знать все электромонтажники – одновременно реализовать оба способа защиты запрещается. Если есть возможность организовать заземление, рассматривать вариант зануления не стоит.

  • В многоквартирных зданиях заземление монтируют по двум сторонам здания или вокруг. Старые здания в большинстве своем исключения, в них вовсе может отсутствовать контур. В загородных домах реализация заземляющего контура – забота домовладельца. Как правило, заземляющий контур имеет треугольную форму.
  • Защитное зануление в квартирах применяется лишь при отсутствии заземления. Как правило, речь идет о многоквартирных домах старого образца. Реализуя этот способ защиты, дополнительно требуется приобретать и устанавливать автоматы и УЗО.

Что лучше

Заземление в сравнении с занулением имеет большое количество преимущественных особенностей.

  • Заземляющий контур можно реализовать самостоятельно в домашних условиях. Для этого потребуется небольшое количество металла и сварочный аппарат. Если же говорить о занулении, то для реализации защиты требуются знания, которые связаны не только с проведением подсчетов, но и выбором наиболее подходящей точки подсоединения провода к нейтрали.
  • Если произойдет обрыв нулевого провода в распределительном щитке, система зануления сразу выйдет из строя и будет неработоспособной. Заземление в этом случае имеет превосходство, поскольку используемый провод РЕ не отваривается и не отгорает. Рекомендуется раз в год проверять его состояние и при необходимости подтягивать клеммы.

Зануление и заземление: что это такое, в чем разница?

Для защиты электропроводки и электроприборов от короткого замыкания (КЗ) в доме, предназначены автоматы и различные другие защитные устройства.
Но как быть в случае утечки тока, например, на корпус электроприбора. В случае этого, электрический ток поразит каждого, кто прикоснётся к металлической части стиральной машины или водонагревателя.

Нередко из-за повреждённой оболочки ТЭНа или изоляции кабеля, возникают различные проблемы, то вода в ванне бьёт током, то краны начинают неприятно пощипывать. Само собой разумеется, что никакие автоматы на электросчетчике, не помогут в решении данной проблемы, для этих целей существует заземление, которое не даст электрическому току пройти через ваше тело.

Итак, заземлением называется преднамеренное соединение металлических частей электроприборов и электрооборудования с землей. Для этих целей в землю забиваются специальные металлические штыри, которые в случае утечки тока на корпус электроприбора отводят электрический ток в землю. В случае отсутствия заземления, избежать поражения электрическим током, при прикосновении к металлическому корпусу электрооборудования, не удастся.

Зануление работает несколько по иному принципу, чем заземление. Так, например, если корпус электроприбора вдруг окажется под напряжением, то это приведёт к короткому замыканию, на которое должны среагировать защитные устройства, автоматически отключив питание электроприбора от электросети. Как видно, отличие зануления от заземления в том, что электрический ток при утечке не уходит в землю, как в случае с защитным заземлением.

Следовательно, заземление способно обеспечить защиту от поражения электрическим током путем его снижения, а зануление, путем отключения питания электроприбора от электрической сети.

Что такое заземление и как оно работает

Говоря обычным языком, заземление монтируется для того, чтобы при возникновении напряжения там, где его быть не должно (корпус стиральной машины, микроволновой печи или холодильника), электричество уходило в землю. Такое может произойти, если в приборе нарушена изоляция и токоведущий провод соприкасается с корпусом. Разберемся, как работает заземление.

Так обозначается заземление. Это тоже своего рода мера безопасности

Представьте, что дома протекает труба. Вода устремляется вниз, но не сквозь плиту, через которую пройти не может, а там, где есть щели. То же самое и здесь. Сопротивление правильно выполненного заземления ничтожно мало (во много раз меньше, чем у человеческого тела). И если человек прикасается к заземленному корпусу, электричество продолжает «течь» по пути наименьшего сопротивления, подобно воде, не причиняя вреда. Но стоит оборвать заземление, как ток пойдет в другом направлении, устремляясь к земле через человеческое тело.

Мнение эксперта

Игорь Мармазов

Инженер-проектировщик ЭС, ЭМ, ЭО (электроснабжение, электрооборудование, внутреннее освещение) ООО «АСП Северо-Запад»

Спросить у специалиста

“Заземление монтируется для защиты человека от поражения электрическим током, сохраняя при этом работоспособность оборудования.”

Ответив на вопрос, для чего нужно заземление, переходим к защитному занулению.

Первая причина выполнить правильное заземление

Принцип действия [ править | править код ]

Принцип работы зануления: если напряжение (фазовый провод) попадает на соединённый с нулём металлический корпус прибора, происходит короткое замыкание. Сила тока в цепи при этом увеличивается до очень больших величин, что вызывает быстрое срабатывание аппаратов защиты (автоматические выключатели, плавкие предохранители), которые отключают линию, питающую неисправный прибор. В любом случае, ПУЭ регламентируют время автоматического отключения повреждённой линии. Для номинального фазного напряжения сети 400/230 В [ источник не указан 885 дней ] оно не должно превышать 0,4 с.

Зануление осуществляется специально предназначенными для этого проводниками. При однофазной проводке — это, например, третья жила провода или кабеля.

Для того, чтобы отключение аппарата защиты произошло в предусмотренное правилами время, сопротивление петли «фаза-ноль» должно быть небольшим, что, в свою очередь, накладывает на все соединения и монтаж сети жёсткие требования качества, иначе зануление может оказаться неэффективным.

Помимо быстрого отключения неисправной линии от электроснабжения, благодаря тому, что нейтраль заземлена, зануление обеспечивает низкое напряжение прикосновения на корпусе электроприбора. Это исключает вероятность поражения током человека. Поскольку нейтраль заземлена, зануление можно рассматривать как специфическую разновидность заземления.

Различают зануление систем TN-C, TN-C-S и TN-S.

Зануление системы TN-C

Простая система зануления, в которой нулевой проводник N и нулевой защитный PE совмещены на всей своей длине. Совместный проводник обозначается аббревиатурой PEN. Имеет существенные недостатки, главный из которых — высокие требования к системам уравнивания потенциалов и сечению PEN-проводника. Применяется для электроснабжения трёхфазных нагрузок, например асинхронных двигателей. Применение данной системы в однофазных групповых и распределительных сетях запрещено:

Зануление системы TN-C-S

Усовершенствованная система зануления, предназначенная для обеспечения электробезопасности однофазных сетей электроустановок. Она состоит из совмещённого PEN-проводника, который соединён с глухозаземлённой нейтралью питающего электроустановку трансформатора. В точке, где трёхфазная линия разветвляется на однофазные потребители (например в этажном щите многоквартирного дома или в подвале такого дома) PEN-проводник разделяется на PE- и N-проводники, непосредственно подходящие к однофазным потребителям.

Зануление системы TN-S

Наиболее совершенная, дорогая и безопасная система зануления, получившая распространение, в частности, в Великобритании . В этой системе нулевой защитный и нулевой проводники разделены на всей своей длине, что существенно повышает её безопасность.

Схемы заземления дома

Существуют такие схемы заземления:

  • TN-C;
  • TN-S;
  • TN-C-S;
  • TT;
  • IT.

Первая маркировка обозначает, что заземление (от фр. terra) есть только на стороне подстанции, у потребителя – нейтраль (neutrall). В связывающей их линии защитный проводник совмещен (combined) с нулевым.

Достоинство TN-C – низкая стоимость: нужны 4-жильные кабели.

Недостаток: заземлить корпуса приборов нельзя – только занулить. Это значит, что их подключают к нейтрали. Если выше точки подключения защитного проводника к нулю случится обрыв, корпуса окажутся под напряжением.

Система TN-S более безопасна. В ней нулевой проводник и защитный, к которому подключают корпуса приборов, разделены (separated). Где бы на линии ни случился обрыв, корпус под напряжением не окажется.

Недостаток – высокая стоимость: нужны 5-жильные кабели.

TN-C-S – это усовершенствованная версия TN-C. Проводники разделены до ввода в здание, т.е. на самом уязвимом участке. Отсюда и до подстанции они совмещены.

TT применяют в частном секторе и в городах при подключении малых архитектурных форм, где систему TN-C нельзя использовать из-за уязвимости воздушных линий передач. TT подразумевает устройство заземлителя на стороне потребителя.

IT – система с изолированной нейтралью, самый надежный вариант.

Типы систем заземления

Вы замечали, что нулевой провод в трёхфазном кабеле имеет меньшее сечение, чем остальные? Это вполне объяснимо, ведь на него ложится не вся нагрузка, а только разница токов между фазами. Хотя бы один контур заземления в сети должен быть, и обычно он находится рядом с источником тока: трансформатор на подстанции. Здесь система требует обязательного зануления, но при этом нулевой проводник перестаёт быть защитным: что бывает, если в ТП «отгорел ноль», знакомо многим. По этой причине заземляющих контуров по всей протяжённости ЛЭП может быть несколько, и обычно так оно и есть.

Конечно, повторное зануление, в отличие от заземления, вовсе не обязательно, но зачастую крайне полезно. По тому, в каком месте выполняется общее и повторные зануления трехфазной сети, различают несколько типов систем.

Разница между заземлением и занулением

В системах под названием I-T или T-T защитный проводник всегда берётся независимо от источника. Для этого у потребителя устраивается собственный контур. Даже если источник имеет свою точку заземления, к которой подключен нулевой проводник, защитной функции последний не имеет. Он с защитным контуром потребителя никак не контактирует.

Системы без заземления на стороне потребителя более распространены. В них защитный проводник передаётся от источника потребителю, в том числе и посредством нулевого провода. Обозначаются такие схемы приставкой TN и одним из трёх постфиксов:

  1. TN-C: защитный и нулевой проводник совмещены, все заземляющие контакты на розетках подключаются к нулевому проводу.
  2. TN-S: защитный и нулевой проводник нигде не контактируют, но могут подключаться к одному и тому же контуру.
  3. TN-C-S: защитный проводник следует от самого источника тока, но там всё равно соединяется с нулевым проводом.

Ключевые моменты электромонтажа

Итак, чем вся эта информация может быть полезна на практике? Схемы с собственным заземлением потребителя, естественно, предпочтительны, но иногда их технически невозможно реализовать. Например, в квартирах высоток или на скальном грунте. Вы должны знать, что при совмещении нулевого и защитного проводника в одном проводе (называемом PEN) безопасность людей не ставится в приоритет. А потому оборудование, с которым контактируют люди, должно иметь дифференциальную защиту.

И здесь начинающие монтажники допускают целый ворох ошибок. Неправильно определяя тип системы заземления/зануления и, соответственно, неверно подключают УЗО. В системах с совмещённым проводником УЗО может устанавливаться в любой точке, но обязательно после места совмещения. Эта ошибка часто возникает в работе с системами TN-C и TN-C-S. А особенно часто, если в таких системах нулевой и защитный проводники не имеют соответствующей маркировки.

Разница между заземлением и занулением

Поэтому никогда не используйте жёлто-зелёные провода там, где в этом нет необходимости. Всегда заземляйте металлические шкафы и корпуса оборудования, но только не совмещённым PEN-проводником. На нём при обрыве нуля возникает опасный потенциал. Это необходимо делать защитным проводом PE, который подключается к собственному контуру.

Кстати, при наличии собственного контура на него выполнять незащищённое зануление очень и очень не рекомендуется. Если только это не контур вашей собственной подстанции или генератора. Дело в том, что при обрыве нуля вся разница асинхронной нагрузки в общегородской сети проследует в землю через ваш контур, раскаляя соединяющий провод.

   Защитное заземление. Чем опасно самостоятельное выполнение заземления?

   Принцип работы заземления для зданий по системе ТN-C, TN-S и TN-C-S.

   Заземление дома. Монтаж контура заземления!

   Контур заземления. Заземление и зануление на объектах.

Будем рады, если подпишетесь на наш Блог!

Как определить сопротивление петли «фаза-нуль»

Требования, содержащиеся в правилах ПТЭЭП, предписывают постоянный контроль состояния ЗУ, обеспечивающих безопасность эксплуатации бытового и промышленного электрооборудования. Согласно этим нормативам в системах до 1000 Вольт с заземленной наглухо нейтралью они обязательно проверяются на одиночное фазное замыкание. Используемые методики испытаний, прежде всего, опираются на техническую базу, представленную образцами измерительных приборов специального назначения.

Измерительная аппаратура

Для проверки сопротивления контурной цепочки замыкания «фаза нуль» традиционно применяются электронные приборы, отличающиеся малой погрешностью измерений. К наиболее известным образцам измерительной техники этого класса относят:

  • Измерители марок М 417 и MSC 300, позволяющие определять проводимость контролируемых цепей (на основании полученных результатов токи КЗ в грунт вычисляются по специальным формулам).
  • Прибор ЭКО-200, предназначенный исключительно для определения токов КЗ. Устройство ЭКЗ-01, используемое точно так же как и ЭКО-200.
  • Измерительный прибор марки ИФН-200.

М417 допускается применять при организации и проведении измерений в трехфазных цепях с заземленным наглухо нулем (в этом случае снятия питающего напряжения не требуется). В ходе испытаний используется метод падения напряжения при размыкании контролируемой цепи на время порядка 0,3 секунды. К неудобствам работы с этим прибором относят обязательность его калибровки перед началом каждого нового измерения.

Измеритель сопротивления цепи фаза-нуль марки М 417

Изделие MSC300 – это более совершенное техническое устройство, оснащенное сложной электронной начинкой в виде современных микропроцессорных чипов. При работе с этим прибором применяется метод снижения потенциала при включении в измеряемую цепь сопротивления величиной 10 Ом. Рабочее напряжение варьируется в границах от 180 до 250 Вольт, а время замера искомого параметра составляет около 0,03 секунды. При проведении замеров он подсоединяется к контролируемой линии в самой удаленной точке, а для начала работы с ним потребуется нажать кнопку «Старт». С результатами измерений можно ознакомиться после вывода их на встроенный цифровой дисплей.

MZC-300 измеритель параметров сетей электропитания зданий и сооружений

В ситуации, когда в распоряжении пользователя не оказалось ни одного образца специальной измерительной техники – для практического определения сопротивления петли «фаза-нуль» могут применяться типовые вольтметр и амперметр. Требуемый результат находится по простейшей формуле, знакомой многим еще по школьному курсу физики.

Где делается зануление

Заземление применяется в основном в жилом фонде. В промышленности же чаще всего используется защитное заземление и зануление электроустановок в комплексе. Здесь учитывается, что при попадании напряжения на корпус того или иного прибора, агрегата, работающего от сети с напряжением гораздо выше бытового, опасность для человека возрастает многократно.

Кроме того, подвергается опасности дорогостоящее оборудование. Поэтому в этом случае лучше, если участок цепи будет мгновенно обесточен защитной автоматикой.

При использовании электрических машин и агрегатов с напряжением 380В и выше для переменного тока или 440В и выше для постоянного тока, монтаж системы зануления обязателен.

Заземление

Начнем с разбора каждой системы по отдельности.

Так, заземление – это преднамеренное соединение электрической сети, прибора или оборудования со специальной конструкцией, закопанной в землю посредством нулевого проводника.

По сути, это единая система, соединяющая между собой токопроводящие элементы приборов и оборудования (к примеру, их корпусы), подсоединенные к ним провода, и штыри, закопанные в землю (контур).

Благодаря высокому сопротивлению контура при касании фазного провода на корпус в случае пробоя, большая часть напряжения уходит в землю, и хоть потенциал все же будет оставаться на корпусе, но его значение будет значительно сниженным и неопасным для человека.

Международный стандарт, разработанный МЭК, включает в себя несколько систем заземления, различия между которыми сводится к разным видам заземления источника питания (генератора или трансформаторной подстанции), и заземления открытых участков сети, приборов.

В стандарт входит три системы – TN, TT и IT.

Первая буква индекса указывает на тип заземления источника (T – «земля), получается, что в первых двух системах трансформаторная подстанция подключается к заземляющему контуру.

Что касается третьей (IT), то у нее источник питания заизолирован, либо же подключен к прибору, обеспечивающему высокое сопротивление (I – изоляция).

Вторая буква индекса указывает на тип заземления открытых участков сети. В системе TN (N — нейтраль) эти участки соединены с нейтральным проводником источника, подключенного к заземляющему контуру (глухое заземление нейтрали).

Для соединения оборудования и приборов используются рабочий (N) и защитный (PE) нулевые проводники.

Что касается двух других систем – TT и IT, то второй буквенный индекс указывает на то, что открытые участки сети, оборудование и приборы заземляются своим отдельным контуром.

Как правильно скручивать провода

В свою очередь система TN делится на подсистемы, их три – TN-C, TN-S, TN-C-S.

Различия между ними сводятся к использованию разных защитных проводников, которыми потребители соединяются с нейтралью источника.

В подсистеме TN-C используется объединенный проводник (PEN), совмещающий в себе и рабочий, и защитный «нуль». Эта подсистема является уже устаревшей, поэтому при укладке новых электросетей она не используется.

Подсистема TN-S отличается тем, что у нее рабочий и защитный «нули» — это разные проводники. То есть, к нейтрали подключается N-проводник, а к заземляющему контуру – PE-проводник, хоть они совмещены на источнике питания.

Третья подсистема – TN-C-S является промежуточным звеном между первыми двумя подсистемами. У нее от нейтрали отходит PEN-проводник, то есть нулевые проводники объединены, но на определенном участке сети они разделяются и к потребителям подходит отдельно рабочий и защитный «нули». После разделения защитный «нуль» дополнительно заземляется.

Более подробно о системах заземления, их достоинствах и недостатках можно почитать здесь https://elektrikexpert.ru/sistemy-zazemlenij.html.

Требования, выдвигаемые заземлению достаточно серьезные. Ведь оно должно обеспечить отвод опасного напряжения с прибора или оборудования в случае пробоя.

Заземление в обязательном порядке делается для сетей, в которых напряжение выше 42 В переменного тока или 110 В – постоянного тока.

Поэтому при проектировании должны правильно подбираться части сети и оборудования, которые подлежат обязательному заземлению, осуществляться контроль за тем, чтобы заземляющая цепь нигде не прерывалась.

Серьезно подходят и к выбору проводников, их сечение должно обеспечивать соответствующую пропускную способность.

Все требования, которые выдвигаются системам заземления прописаны в ПУЭ (Правила устройства электроустановок).

Здесь можно подробнее узнать, как сделать заземление в частном доме.

Добавить комментарий

Ваш адрес email не будет опубликован. Обязательные поля помечены *

Adblock
detector