Что такое плазморез и как работает плазменный резак по металлу?

Как устроен плазморез

  • источник питания;
  • воздушный компрессор;
  • плазменный резак или плазмотрон;
  • кабель-шланговый пакет.

Источник питания для аппарата плазменной резки осуществляет подачу на плазмотрон определенной силы тока. Представляет собой инвертор или трансформатор.

Трансформаторы гораздо увесистее, тратят много энергии, но при этом имеют меньшую чувствительность к перепадам напряжения, и с их помощью разрезают заготовки большой толщины.

Плазменный резак считается главным элементом плазмореза. Его основными элементами являются:

  • сопло;
  • охладитель/изолятор;
  • канал, необходимый для подачи сжатого воздуха;
  • электрод.

Компрессор требуется для подачи воздуха. Принцип работы плазменной резки предусматривает применение защитных и плазмообразующих газов. Для аппаратов, которые рассчитаны на силу тока до 200 А, применяется только сжатый воздух как для охлаждения, так и для создания плазмы. Они способны разрезать заготовки толщиной в 50 мм.

Кабель-шланговый пакет используется для соединения компрессора, источника питания и плазмотрона. По электрическому кабелю от инвертора или трансформатора начинает поступать ток для возбуждения электрической дуги, а по шлангу осуществляется подача сжатого воздуха, который требуется для возникновения внутри плазмотрона плазмы.

Принцип работы

После того как возникла дежурная дуга, в камеру начинает поступать сжатый воздух. Вырываясь из патрубка, он проходит через электрическую дугу, нагревается, при этом увеличиваясь в объеме в 50 или 100 раз. Кроме того, воздух начинает ионизироваться и перестает быть диэлектриком, приобретая свойства проводить ток.

Сопло плазмотрона, суженное книзу, обжимает воздух, создавая из него поток, которое начинает вырываться оттуда со скоростью 2 – 3 м/с. В этом момент температура воздуха часто достигает 30 тыс. градусов. Именно такой раскаленный ионизированный воздух и является плазмой.

В то время, когда плазма начинает вырываться из сопла, происходит ее соприкосновение с поверхностью обрабатываемого металла, дежурная дуга в этот момент гаснет, а зажигается режущая. Она начинает разогревать заготовку в месте реза. Металл в результате этого плавится и появляется рез. На поверхности разрезаемого металла образуются небольшие частички расплавленного металла, сдуваемые с нее потоком воздуха. Таким образом осуществляется работа плазмотрона.

Преимущества плазменной резки

Работы по резке металла часто осуществляются на стройплощадке, в мастерской или цеху. Можно использовать для этого автоген, но не всех это устраивает. Если объем работ, связанный с резкой металла, слишком большой, а требования, предъявляемые к качеству реза, очень высоки, то следует подумать о том, чтобы использовать плазменный резак, имеющим следующие достоинства:

  • Если мощность подобрана правильно, то аппарат плазменной резки позволяет в 10 раз повысить производительность. Такой параметр позволяет плазморезу уступить только промышленной лазерной установке, однако, он значительно выигрывает в себестоимости. Целесообразно с экономической точки зрения применять пламенную резку для металла, имеющего толщину до 50 – 60 мм.
  • Универсальность. С помощью плазменной резки обрабатываются чугун, медь, сталь, алюминий и прочий металл. Необходимо просто выбрать оптимальную мощность и выставить конкретное давление воздуха.

  • Высокое качество реза. Аппараты плазменной резки способны обеспечить минимальную ширину реза и кромки без перекаливания, наплывов и грата практически без дополнительной обработки. Кроме того, достаточно важен такой момент, что зона нагрева материала в несколько раз меньше, чем при использовании автогена. А так как термическое воздействие минимально на участке реза, то и деформация от этого вырезанных деталей будет незначительной, даже если они имеют небольшую толщину.
  • Не происходит существенного загрязнения окружающей среды. С экономической точки зрения, если имеются большие объемы работ, то плазменная резка гораздо выгоднее кислородной или механической. Во всех остальных случаях учитывают не материалы, а трудоемкость использования.

Недостатки плазменной резки

Недостатки в работе плазменной резки тоже имеются. Первый из них – максимально допустимая толщина реза довольно небольшая, и у самых мощных агрегатов она редко бывает больше 80 – 100 мм.

не должен быть больше 10 – 50 градусов

Кроме того, рабочее оборудование довольно сложное, что делает совершенно невозможным использование двух резаков одновременно, которые подключаются к одному аппарату.

Применение установок

Плазменные станки с ЧПУ выбираются для отраслей, где требуются близкие к идеальным точность и ровность реза. Это машино-, судо-, приборостроительные сферы, металлопрокатные заводы и т. д. Но монтаж оборудования для плазменной резки не ограничивается производственными и промышленными предприятиями. Станки нередко выбирают для комплектования частных мастерских, включая кузнечные цеха.

Итак, какими возможностями обладают плазменные станки:

  • Резка листового материала. Это основная область, для которой достаточно небольшого компактного устройства. Плазме поддаётся большое количество разнообразных металлов. Толщина поддающихся материалов пропорциональна их теплопроводимым свойствам. Т.е. чем они выше, тем меньше должна быть толщина металла.
  • Резка трудноподдающихся обработке металлов. Плазма одна из немногих без проблем справляется с чугуном, а также достаточно капризной нержавеющей сталью. При этом место реза получается чистым, без грота и оплавлений, что особенно ценно при производстве высококачественных изделий.
  • Резка труб. При работе с трубопрокатом большого диаметра сложно обойтись только автогенным аппаратом. Тут и приходят на помощь плазменные труборезы, которые могут оснащаться дополнительными приводами для автоматизации процесса. К тому же, плазма гораздо чище и ровнее способна разрезать трубу, чем тот же автоген.
  • Художественная фигурная резка. Станок позволяет вырезать оригинальные узоры сложной геометрической формы из листового металла. Изделия находят применение в строительстве, приборостроении, а также в качестве декоративных компонентов для украшения фасадов, заборов, беседок. Посредством фигурной резки можно воплотить любые дизайнерские задумки.
  • Резка других материалов. Помимо прочего, станок плазменной резки купить можно и в целях обработки бетона, камня и других прочных материалов с плотной структурой (толщиной до 100 мм). Однако для этих целей необходимы специальные станки или модернизация существующего оборудования.
  • Резка отверстий. С данной задачей прекрасно справляются практически все станки плазменной резки.

Технология начала активно внедряться во все промышленные сферы не так давно, но уже приобрела массу почитателей среди профессиональных мастеров, специалистов разного уровня. Они оценили универсальность плазменного метода резки, его высокое качество, а главное – экономическую эффективность.

Сегодня у многих на слуху мировые гиганты Hypertherm, Kjellberg, а также российские бренды. Один из ведущих отечественных разработчиков – это ПЛАЗМАКРОЙ, выпускающий высококачественное инновационное оборудование по доступным ценам. Количество производителей плазменного оборудования неуклонно растёт, что обусловлено всё возрастающим спросом. Уже сейчас можно говорить о будущем плазмы, которая, возможно, вскоре вытеснит с рынка многие аналоги и станет общедоступным инструментом для металлообработки.

Требования к устройству и оснащению плазменных установок

3.1. Плазменные установки должны иметь пускорегулирующую, контрольную и защитную аппаратуру, обеспечивающую автоматическое поддержание режимов, безопасное обслуживание.

3.2. Вновь разрабатываемое оборудование, комплектное с механизмами перемещения плазмотрона, должно быть оснащено встроенными устройствами для отсоса пыли и газов, экранами для защиты от электромагнитного излучения и предупреждения распространения шума.

3.3. Полуавтоматические и автоматические плазменные установки должны иметь встроенные отсосы. Местные отсосы должны быть встроены в технологическую оснастку механизированных поточных и конвейерных линий.

3.4. При монтажных и других работах на нестационарных рабочих местах допускается использование вытяжных устройств, не связанных жестко с оборудованием и оснасткой.

3.5. Плазменные установки должны соответствовать требованиям «Санитарных норм и правил работы с источниками электромагнитных полей радиочастотного диапазона», утвержденных Минздравом СССР и ГОСТ 12.1.006-84 «ССБТ. Электромагнитные поля радиочастот. Допустимые уровни на рабочих местах. Требования к проведению контроля».

3.6. Установки автоматизированной плазменной резки (машины с числовым программным управлением) должны быть оборудованы рабочим креслом оператора, удовлетворяющим эргономическим требованиям.

3.7. В технологической документации должны быть указаны основные и вспомогательные средства технологического оснащения, включая защитные, транспортные устройства и средства, обеспечивающие безопасные условия работы.

3.8. Паспортная документация на плазменные установки должна включать рекомендации по размещению оборудования и защите рабочих мест от вредных и опасных производственных факторов.

3.9. В паспорте должны быть указаны:

— параметры шума, генерируемого плазмотроном при оптимальном технологическом режиме;

— перечень средств защиты от оптического излучения и шума;

— рекомендуемый тип укрытия для локализации и удаления вредных веществ;

— производительность местной вентиляции;

— напряжение холостого хода источника питания (для ручного процесса — не более 180 В, для полуавтоматического — 300 В, для автоматического — 500 В).

Критерии качества плазменной резки металла

Классификация видов термической резки, габариты деталей и качество обработки установлены европейским регламентом EN ISO 9013 «Термическая резка».

Этот стандарт касается любых материалов, которые можно разделить плазмой, кислородом или лазером. Но при плазменной резке металла станками с ЧПУ или ручным оборудованием толщина должна быть в пределах от 1 до 150 мм.

Грат в нижней части реза и брызги в верхней части.

После плазменной резки металла на поверхности снизу можно увидеть затвердевшие частички самого металла и его оксида. Это грат. Брызги же обычно остаются на верхней кромке заготовки, обработанной плазмой. Грат образуется под воздействием множества факторов. К примеру, на его формирование могут повлиять определенная скорость резки, удаленность резака от обрабатываемой поверхности, сила тока, напряжение, выбор газа и самого метода резки металла плазмой.

Появится грат или нет, может зависеть также и от самого материала, его геометрических параметров, качества поверхности и скачков температуры в ходе процесса. Если скорость разделения металлов будет слишком низкой или, наоборот, высокой, тоже может сформироваться избыточный металл. Скорее всего, его не будет, если выбрать среднюю скорость. Также не допустить появления грата помогут правильно подобранный газ и технология резки.

Угловое отклонение.

При выполнении плазменной резки разные температуры в дуге способствуют тому, что поверхность реза получается под небольшим углом. За счет того, что вверху реза нагрев был сильнее, материал там расплавился в большей степени, чем в нижней части. Но чем лучше была обжата дуга, тем менее заметным будет угловое отклонение. На последнее также влияют расстояние от резака до поверхности и скорость резки. Стандартное разделение материала плазмой предполагает, что с двух сторон угол резки равен 4–8°.

Обрабатываемые заготовки будут иметь общие края реза, если угол резки станет меньше 1°. Достичь такого результата позволяет технология плазменного разделения с повышенным обжатием.

На практике специалисты по плазменной резке придерживаются правила, согласно которому ширина реза должна соответствовать 1,5–2 диаметрам выхода сопла. На то, какой будет эта величина, влияет скорость резки. Чем она ниже, тем более широкий рез удастся получить.

Металлургический эффект (область термического воздействия).

Если сравнивать с резкой кислородом, при плазменной обработке нелегированных сталей область теплового воздействия будет меньше на третью часть. Когда плазмой разделяют иные материалы, зона, находящаяся под влиянием высоких температур, будет зависеть от самого материала.

Насыщение азотом.

Во время плазменного разделения деталей с использованием воздуха или азота большое количество последнего начинает скапливаться на поверхности реза. Это может стать причиной появления пор в сварочном шве. Их будет гораздо меньше, если применять кислород.

Получить высококачественный и высокоточный рез позволяет использование плазмы с повышенным обжатием. Основные преимущества данной технологии – это получение допусков по ±0,2 мм и возможность невероятно точного повторения. В результате резы по качеству ничуть не уступают лазерной обработке.

Если рассматривать самые распространенные стали, тут можно получить качество реза, соответствующее стандартам, но нужно придерживаться установленных параметров обработки. То же самое касается и заготовок из алюминия, однако нужно иметь в виду, что у них высота от вершин до впадин не такая, как у стальных деталей. У алюминия она больше. Поэтому можно сказать, что качество обработки во многом зависит именно от материала изделий.

Например, состояние кромки определяется такими составляющими, как титан, магний, их сплавы, латунь и медь. Причем последние два вещества обладают выраженной зернистой структурой, а их высоту от вершин до впадин не получится рассчитать или оценить по регламенту EN ISO 9013.

Технология резки плазмой с повышенным обжатием позволяет достичь следующих результатов:

  • Грата нет совсем либо он образуется в минимальном количестве.
  • Даже при острых краях и углах контур получается очень точным.
  • Небольшой допуск неровности поверхностей реза.
  • Возможность высокоточной подгонки.
  • Малая область воздействия высокой температуры и минимальное искривление.
  • Рез ровный и гладкий, так как высота от вершин до впадин очень маленькая.
  • Можно получить отверстия нужного небольшого диаметра.

Виды плазморезов

По типу резки:

  • Для ручной резки. Обладают небольшим размером, применяются на производствах небольшого масштаба, СТО, для личного использования. Даже сравнительно маломощные инверторные плазморезы способны резать металлические изделия толщиной до 30 мм. Они справляются с листовым металлом, трубами и различными конструкциями. Это те плазморезы, которые покупают для гаража или дома.
  • Для автоматической резки. Применяются в стационарных установках, управляемых ЧПУ. Используются для автоматического раскроя металла. Как правило, в таких плазморезах используется несколько сменных сопл.

По типу используемого газа:

  • На сжатом воздухе. Это самый популярный тип плазморезов. Их основные преимущества — простая конструкция, невысокая стоимость, легкое управление. Они могут использовать как обычный, так и очищенный сжатый воздух.
  • На аргоне, кислороде, азоте. Применяются в системах высокой сложности и в крупных автоматических станках. Могут использоваться для резки цветных металлов или сплавов. Нуждаются в более точной настройке, чем плазморезы на сжатом воздухе.

По типу поджига дуги:

  • Контактные. Требуют контакта между соплом и материалом для появления дуги.
  • Пневматический поджиг. Внутри плазмотрона формируется стартовая дуга, которую также называют дежурной. Она формируется без контакта с металлической деталью, а также не предполагает подачу разряда с высокой частотой, который может повредить электронику.
  • Высокочастотный поджиг. Для образования дуги используется осциллятор. Появляется она только тогда, когда между резаком и поверхностью детали проходит разряд высокой частоты. Стартовая дуга возникает по команде оператора, а рабочая дуга появляется автоматически, когда сопло приближается к детали.

По типу охлаждения:

  • Воздушное. Сопло охлаждается по мере прохождения через него рабочего газа или воздуха.
  • Жидкостное. Необходимо для охлаждения мощных устройств, которые используют ток силой от 150 А.

Как изготовить плазменный резак

Рабочим инструментом установки плазменной резки является резак, или плазмотрон. Он создает поток воздуха, превращенный в плазму, разогретую до 30000°С, которая разрезает металл.

Изготовить его можно самостоятельно. Желательно в качестве образца использовать готовую конструкцию. Состоит плазмотрон из нескольких основных элементов:

  • Центральный держатель со сменным электродом. При токе реза до 100А и толщине металла до 50 мм держатель изготавливается из медного прута, в более мощных аппаратах внутри есть каналы для водяного охлаждения. Для поджига дуги расстояние между электродом и соплом должно быть 2 мм, поэтому для регулировки плазмотрона центральный стержень делается подвижным.
  • Изолятор между центральным электродом и наружным корпусом. Часть изолятора, ближняя к соплу, изнашивается и изготавливается сменной из фторопласта.
  • Наружный корпус со сменным соплом. Плазма образуется в камере между электродом и соплом. При изготовлении устройства с водяным охлаждением внутри стенок находятся каналы для охлаждающей жидкости.
  • Сменные насадки, кабеля – силовой и для вспомогательной дуги, шланги.

Один из способов изготовить такое устройство – это сделать его из горелки для аргонно-дуговой сварки. В ней есть большинство необходимых элементов:

  • вольфрамовый электрод Ø4мм с возможностью регулировки положения;
  • клемма и кабель для подачи к нему тока для сварки;
  • направляющие каналы и шланг для подвода газа к соплу.

Для доработки необходимо:

  • снять тонкостенное латунное сопло;
  • накрутить вместо него изолирующую прокладку из фторопласта цилиндрической формы с резьбой снаружи и внутри цилиндра;
  • сверху на прокладку накрутить латунный корпус с креплением для медного сопла;
  • к корпусу припаять или прижать хомутом кабель для вспомогательной дуги;
  • в рукоятке установить микровыключатель, включающий режим реза.

Сменные насадки

Сменными элементами, которые изнашиваются во время работы, являются электроды и сопла:

  • Электрод изготавливается из меди со вставкой из тугоплавкого металла – бериллия, тория, циркония и гафния. Вставка находится в центре, напротив отверстия сопла. Вспомогательная кратковременная дуга появляется между краем электрода и соплом, рабочая постоянная между вставкой и деталью, поэтому вставка, является самым изнашивающимся элементом и заменяется вместе с электродом.
  • Сопло формирует плазменную струю, образованную электродом. Оптимальный размер сопла 30мм, в центре находится отверстие Ø2мм. Во время работы плазма, проходящая через него, увеличивает диаметр канала, что делает поток газа шире, а рез менее аккуратным. Поэтому сопло, как и электрод, следует периодически менять.

Выбор газа

Несмотря на то, что любой металл можно разрезать потоком воздуха, создаваемым компрессором, для каждого из металлов есть оптимальный состав газа:

  • медь, латунь и титана – азот;
  • алюминий – смесь азота с водородом;
  • высоколегированная сталь – аргон.

Классификация видов плазменной резки

Виды плазменной резки будут зависеть от среды, в которой проводятся работы по металлу:

Простой

Главное отличие способа – ограниченность электрической дуги. Для резки используется электрический ток и воздух. Иногда вместо воздуха применяются газ в виде азота. Если металлически лист тонкий – всего несколько миллиметров, процесс можно сравнить с лазерным разрезанием.

В разрезах получаются очень ровные кромки, не требующие дальнейшей доработки.

С применением защитного газа

При этом способе вместо воздуха используются защитные газы, которые превращаются в плазменный поток после преобразования в плазмотроне. Качество срезов в данном случае значительно повышается благодаря отличной защите процесса от воздействия окружающей среды.

Газ для плазменной резки не представляет из себя ничего необычного: это может быть водород или аргон – «газовая классика».

С водой вместо воздуха

Отличны способ со многими преимуществами, одно из которых – отсутствие необходимости в дорогостоящей и громоздкой системе охлаждения.

Существуют и другие критерии классификации плазменной резки. К примеру, виды резки бывают разделительными и поверхностными. Первый из них используется чаще.

Плазменные резаки представлены на рынке в самых разнообразных вариантах, так что их можно классифицировать по маркам, производителям и многим другим техническим и торговым параметрам.

Приёмы плазменной сварки

Существует достаточно много сплавов и их пар, которые ведут себя совершенно по-разному в расплаве. У них может быть разная вязкость по температуре, газообразование, смешиваемость в расплаве и скорость застывания. Кроме того, очень большую роль играют силы тяжести – масса ванны может оказаться достаточно большой, а поверхностное натяжение расплава достаточно малым. При этих условиях ванна просто протечет, если только она как-то не уплотнена, что возможно далеко не во всех случаях.

Техника и особенности процесса во всех пространственных положениях

В технике мы имеем дело с самыми разнообразными расположениями . При сварке отдельных деталей работа немного облегчается тем, что расположение можно свести к горизонтальному, с горелкой, расположенной сверху.

Сварка отдельных деталей

Это наиболее выгодное расположение при сварке, но не всегда технологически возможное. Например, при варке шва на корпусе судна приходится располагать горелку как угодно – судно не повернешь в доке как игрушку. Поэтому для защиты ванны от растекания за допустимые пределы приходится подбирать выгодные положения горелки.

Например, при варке вертикального шва горелка находится немного ниже шва и плазменная струя направлена вверх. С помощью подбора угла наклона и расстояния до ванны удается “сдувать” стекающий металл наверх. Это делается динамически, по мере прохождения шва и требует хороших навыков при ручном выполнении.

Сварка плазморезом цветных металлов

Сразу нужно сказать, что плазма является лишь мощным источником местного нагрева. Если так можно выразиться, она лучше “сфокусирована”, по аналогии с фотографией. И в этом отношении, по “резкости” она уступает только лазерной сварке. Плазменная струя дает хорошее проплавление шва в узкой области. Все остальное поведение металлов зависит только от их химической природы.

Если по какой-то причине сплавы не переносят “легирования” вольфрамом, гафнием, или другими добавками в структуру шва, то в плазмотроне просто используют угольный катод. Иногда наоборот, приходится вводить в расплав промежуточный металл, чтобы шов не трескался в горячем или холодном состоянии.

Цветные металлы имеют меньшую, по сравнению с черными металлами, температуру плавления и довольно легко свариваются. Тем не менее, за счет большой теплопроводности этих металлов (напр. Cu Al Mn) требуется такой же, или даже больший по мощности источник нагрева.

Исключением является алюминий, чрезвычайно легко окисляющийся и образующий прочную связь с атомами кислорода. К тому же, окись алюминия очень тугоплавкое вещество. Здесь необходимо применение специальных флюсов и их постоянное присутствие в ванне.

Видео ролик — сварка алюминия

Для защиты от кислорода также применяют аргон, как наиболее распространенный и дешевый из инертных газов. Но он вполне эффективен только тогда, когда ванна обдувается со всех сторон. По этой причине очень сложно варить алюминий в присутствии ветра вне помещений. Сварка титановых сплавов также требует использования аргона. Причем аргон должен быть высшего качества.

При сварке тонких листов плазменную горелку не следует располагать слишком близко к металлу, так как при этом можно слишком легко выдуть его. Давление плазменной дуги на металл значительно (в 5-7 раз) выше, чем обычной. Сварочный ток необходимо ограничить величиной 12-14 и менее ампер. Иногда хватает и 1-2 А.

Плюсы и минусы

К преимуществам использования плазменного оборудования перед другими методами резки относят:

  • возможность работы со всеми металлами и сплавами;
  • высокую производительность аппарата;
  • увеличенную точность воздействия, помогающую получить ровный срез без наплывов и потеков;
  • отсутствие необходимости предварительного нагрева деталей;
  • отказ от использования взрывоопасных газов – метана или кислорода.

Отрицательными сторонами плазменной резки считают:

  • сложность сборки самодельного аппарата, высокую стоимость готовых установок;
  • необходимость организации отдельного блока управления для каждого оператора;
  • угол среза не более 50°;
  • повышенный уровень шума от работающего оборудования.

Советы и нюансы

Еще одной отличительной положительно характеристикой метода является то, что во время процесса происходит нагрев лишь небольшого локального участка. Да и остывает этот участок намного быстрее, чем при лазерной или механической резке.

Охлаждение необходимо только для двух составных элементов – катода и сопла, как самых нагруженных. Это без проблем производится с помощью рабочей жидкости.

Плазменная дуга и струя.Дуга

Лишняя влага впитывается специальным материалом, который находится в резервуаре камеры плазмотрона.

Правила безопасности при данном методе имеют строжайший характер, потому что все аппараты плазменной резки могут быть очень травматичными для мастера. Особенно это касается моделей с ручным управлением.

Все будет в порядке, если вы будете соблюдать рекомендации по защитной амуниции мастера: щиток, затемнённые очки, защитные ботинки и т.д. В этом случае вы сможете уберечься от главных факторов риска данного метода – капель расплавленного металла, высокого напряжения и раскаленного воздуха.

Еще один совет по безопасности – ни в коем случае не стучать резаком по металлу для удаления металлических брызг, как это делают некоторые мастера. Вы рискуете повредить аппарат, но главное – поймать кусочки расплавленного металла, например, лицом или другой незащищенной частью тела. Лучше поберечь себя.

Экономия расходных материалов занимает не последнее место в эффективной резке. Для этого зажигаем электрическую дугу не слишком часто, а точно и в срок, чтобы не обрывать ее без надобности.

Экономия ресурсов также распространяется на силу и мощность тока. Если рассчитать его правильно, вы получите не только экономию, но и отличный срез без заусениц, окалины и деформации металла.

Для этого следует работать по следующей схеме: сначала подать ток высокой мощности, сделать пару – тройку разрезов с его помощью. Если сила и мощность тока великоваты, на металле сразу же будет образовываться окалина из-за значительного перегрева.

После осмотра срезов будет ясно, оставить ток на этом уровне или изменить его. Иными словами, работаем экспериментально – малыми пробами.

Добавить комментарий

Ваш адрес email не будет опубликован. Обязательные поля помечены *

Adblock
detector