Калькулятор расчета емкости рабочего и пускового конденсаторов
Содержание:
- Характеристики и свойства
- Программа для определения емкости конденсатора по цифровой маркировке
- Пояснения к расчету
- Физические величины, используемые в маркировке емкости керамических конденсаторов
- Подключение двигателя 380 на 220 Вольт с конденсатором
- Цифровая маркировка конденсаторов онлайн калькулятор
- Конденсаторы с переменной емкостью
- Цифровая маркировка конденсаторов онлайн калькулятор
- Расчет гасящего конденсатора для светодиода
- Электроемкость
- Как рассчитать емкость конденсатора
- Цифровая маркировка конденсаторов онлайн калькулятор
- Принцип действия конденсатора
- Почему электролитические конденсаторы выходят из строя и что делать
- Где и для чего используются
- Схема подключения двигателя через конденсатор
- Как подключить пусковой и рабочий конденсаторы
Характеристики и свойства
К параметрам конденсатора, которые используют для создания и ремонта электронных устройств, относят:
- Ёмкость — С. Определяет количество заряда, которое удерживает прибор. На корпусе указывается значение номинальной ёмкости. Для создания требуемых значений элементы включают в цепь параллельно или последовательно. Эксплуатационные величины не совпадают с расчетными.
- Резонансная частота — fр. Если частота тока больше резонансной, то проявляются индуктивные свойства элемента. Это затрудняет работу. Чтобы обеспечить расчетную мощность в цепи, конденсатор разумно использовать на частотах меньше резонансных значений.
- Номинальное напряжение — Uн. Для предупреждения пробоя элемента рабочее напряжение устанавливают меньше номинального. Параметр указывается на корпусе конденсатора.
- Полярность. При неверном подключении произойдет пробой и выход из строя.
- Электрическое сопротивление изоляции — Rd. Определяет ток утечки прибора. В устройствах детали располагаются близко друг к другу. При высоком токе утечки возможны паразитные связи в цепях. Это приводит к неисправностям. Ток утечки ухудшает емкостные свойства элемента.
- Температурный коэффициент — TKE. Значение определяет, как ёмкость прибора меняется при колебаниях температуры среды. Параметр используют, когда разрабатывают устройства для эксплуатации в тяжелых климатических условиях.
- Паразитный пьезоэффект. Некоторые типы конденсаторов при деформации создают шумы в устройствах.
Программа для определения емкости конденсатора по цифровой маркировке
Данная программа позволяет оперативно определить емкость конденсатора по цифровой маркировке. Определение емкости конденсатора выполняется в соответствии со стандартами IEC по таблице 1. Сам принцип определения емкости конденсатора показан на рис.1.
Рис.1 – Определение емкости конденсатора
Рассмотрим на примере определение емкости конденсатора по цифровой маркировке с помощью данной программы. Выберем конденсатор с цифровой маркировкой 104, для данного конденсатора в соответствии с таблицей 1 и представленным методом определения емкости (см.рис.1), емкость составит: 104 = 10 х 104 = 100000 pF = 100 nF = 0,1 µF, для цифровой маркировки 330, емкость составит: 330 = 33 pF = 0,033 nF = 0,000033 µF. Как мы видим, программа правильно определяет емкость конденсатора по цифровой маркировке.
Если же Вам нужно определить емкость конденсатора по цветовой маркировке, воспользуйтесь программой «Конденсатор v1.2».
Данный проект поддерживается и развивается исключительно на средства от добровольных пожертвований.
Проявив лояльность к сайту, Вы можете перечислить любую сумму денег, тем самым вы поможете улучшить данный сайт, повысить регулярность появления новых интересных статей и оплатить регулярные расходы, такие как: оплата хостинга, доменного имени, SSL-сертификата, зарплата нашим авторам.
Хотите быстро рассчитать силу тока, напряжение, мощность или другие электрические величины.
Данный калькулятор расчета основных измеряемых величин в электротехнике, выполненный в программе Microsoft.
Содержание 1. Введение2. Функциональность программы:2.1 Расчет токов КЗ в сети 0,4 кВ — трехфазных.
Представляю Вашему вниманию еще одну программу расчета уставок дифференциальной токовой защиты.
В данной статье речь пойдет о программе расчета уставок дифференциальной токовой защиты.
Отправляя сообщение, Вы разрешаете сбор и обработку персональных данных. Политика конфиденциальности.
Пояснения к расчету
Схема соединения обычно отмечена на самом конденсаторе, и может обозначаться либо звёздой, либо треугольником. Как правило, это две разные формы, ёмкость которых рассчитывается, по- разному:
Схема подключения рабочего и пускового конденсатора при разных способах подключения обмоток | Расчетные зависимости |
---|---|
Ср = 2800*I/U; I = P/(√3*U*η*cosϕ) |
Ср – емкость рабочего конденсатора
Ср = 4800*I/U; I = P/(√3*U*η*cosϕ)
Ср – емкость рабочего конденсатора
Сп = 2,5*Ср, где Сп – емкость пускового конденсатора при любом способе подключения
Расшифровка обозначений:
Ср – емкость рабочего конденсатора, мкФ Сп – емкость пускового конденсатора, мкФ I – ток, А U – напряжение в сети, В η – КПД двигателя в %, деленных на 100 cosϕ – коэффициент мощности
Полученные результаты расчета используются для подбора конденсаторов нужных номиналов. Номинала именно расчетного значения вряд ли можно будет найти, поэтому правила подбора следующие:
- если расчетное значение точно попало в существующий номинал, то в этом случае повезло – берете именно такой.
- если совпадения нет, то рекомендуется выбирать емкость ближайшего нижнего номинального значения. Выбирать выше не следует (особенно для рабочих конденсаторов), так как существует вероятность значительного возрастания рабочих токов и перегрева обмоток.
- По напряжению конденсаторы обязательно подбираются с номиналом не менее, чем в 1,5 раза выше напряжения сети, поскольку в момент пуска напряжение на самом конденсаторе всегда повышенное. Например, для однофазного напряжения 220 В рабочее напряжение конденсатора должно быть не менее 360 В, а по опыту электриков даже не менее 400 В.
Ниже мы приведем таблицу номинальных значений конденсаторов серий СВВ60 и СВВ65. Эти конденсаторы чаще всего применяют при подключении асинхронных двигателей. Серия СВВ65 отличается от серии СВВ60 металлическим корпусом. В качестве пусковых часто применяют электролитические конденсаторы серии CD60. Причем опытные профессионалы не рекомендуют использовать их в качестве рабочих, поскольку продолжительные время работы быстро выводит их из строя.
Полипропиленовые пленочные конденсаторы серий СВВ60 и СВВ65 | Электролитические неполярные конденсаторы серии CD60 | |
---|---|---|
Изображение | ||
Номинальное рабочее напряжение, В | 400; 450; 630 | 220-275; 300; 450 |
Номинальный ряд, мкФ | 1,5; 2,0; 2,5; 3,0; 3,5; 4,0; 5,0; 6,0; 7,0; 8,0; 10; 12; 14; 15; 16; 20; 25; 30; 35; 40; 45; 50; 60; 65; 70; 75; 80; 85; 90; 100; 120; 150 | 5; 10; 15; 20; 25; 50; 75; 100; 150; 200; 250; 300; 350; 400; 450; 500; 600; 700; 800; 1000; 1200; 1500 |
Иногда бывает рациональнее использовать два и более конденсатора, чтобы получить нужную емкость. При этом они могут быть соединены последовательно или параллельно. При параллельном соединении результирующая емкость будет складываться, при последовательном она будет меньше емкости любого из конденсаторов. Для расчета данного соединения мы также подготовили для вас специальный калькулятор.
Физические величины, используемые в маркировке емкости керамических конденсаторов
Для определения величины емкости в международной системе единиц (СИ) используется Фарад (Ф, F). Для стандартной электрической схемы это слишком большая величина, поэтому в маркировке бытовых конденсаторов используются более мелкие единицы.
Таблица единиц емкости, применяемых для бытовых керамических конденсаторов
Наименование единицы | Варианты обозначений | Степень по отношению к Фараду | |
Микрофарад | Microfarad | мкФ, µF, uF, mF | 10-6F |
Нанофарад | Nanofarad | нФ, nF | 10-9F |
Пикофарад | Picofarad | пФ, pF, mmF, uuF | 10-12F |
Редко применяется внемаркировочная единица миллифарад – 1 мФ (10-3Ф).
Подключение двигателя 380 на 220 Вольт с конденсатором
Трёхфазный асинхронный электродвигатель при необходимости можно подключить и к однофазной электросети. Вал движка будет вращаться, но при этом, конечно же, не будет на нём той силы, которая существует при его трёхфазном подключении. Помимо вращающегося магнитного поля в статоре получается наложение электромагнитных полей трёх обмоток. Они и определяют силу и крутящий момент на валу. Но при однофазном включении трёхфазный асинхронный двигатель можно рассматривать и как крупногабаритную разновидность однофазного двигателя. Ведь в нем, по сути, присутствуют одна рабочая и две пусковые обмотки.
Штатное подключение к трёхфазной электросети предусматривает одну из схем соединения обмоток – либо «треугольник», либо «звезда». Поэтому электрические режимы обмоток при соединении их по схеме «треугольник» допускают напряжение 380 В как номинальное. При однофазном напряжении его величина равна 220 В. Это меньше чем при включении по схеме «треугольник» и поэтому безопасно для электрических режимов обмотки относительно надёжности изоляции и насыщения сердечников обмоток. Но уменьшение напряжение приводит к снижению уровня, как электрической мощности, так и мощности на вале движка.
Цифровая маркировка конденсаторов онлайн калькулятор
- Главная
- Форум
- Новости
- Блог
- Почта
- Обратная связь
- Ссылки
- Сотрудничество
- Авторам
- Вебмастерам
Расчёты онлайн
- Калькулятор номинала SMD резистора
Генератор символов для LCD HD44780
Расчёт делителя напряжения
Определение сопротивлений резисторов по цветовой маркировке
Расчёт сопротивления резистора для светодиода
Расчёт ширины дорожки печатной платы
Цветовая маркировка резисторов, конденсаторов и индуктивностей
Расчёт резонансной частоты колебательного контура
Калькулятор фьюзов AVR
Расчёт DC-DC преобразователя на базе MC34063A
Расчёт частоты таймера 555
Расчёт линейного стабилизатора
Конвертер даты и времени в UNIX формат и обратно
Cхемы
Цифровые устройства
- Автоматика
Программаторы
Таймеры, часы, счётчики
Для ПК
Для дома
Игрушки
Аналоговые устройства
- Передатчики и приёмники
Генераторы
Усилители
Видео и ТВ
Регуляторы
Звукотехника
- Усилители
Фильтры, эквалайзеры
Для музыкантов
Акустика
Разное
Светотехника
- Мигалки
Освещение
Светоэффекты
Детектирование
- Металлоискатели
Измерения
- Осциллографы
Измерители L-C-R
Вольт/Амперметры
Термометры
Питание
- Блоки питания
Преобразователи и ИБП
Зарядные устройства
Альтернативная энергетика
Arduino
Авто и мото
Станки с ЧПУ
Статьи
Антенны
- WI-FI
Обучалка
- Аналоговая техника
Цифровая техника
Микроконтроллеры
Аудиотехника
Видеотехника
Программные пакеты
Измерения
Разное
Секреты самодельщика
Файлы
Программы
- CADs
Компиляторы, программаторы
Для печатных плат
Схемы, панели и шкалы
Расчёты
Разное
Книги
- Verilog и VHDL
Цифровые устройства и МП
Математический анализ
Основы теории цепей
Теория вероятностей
РТ цепи и сигналы
Метрология
Микроконтроллеры
Программирование
Справочники
Схемотехника
Устройства СВЧ и антенны
РПДУ и УГФС
РПУ и УПиОС
РТС и СТРТС
Телевидение и видеотехника
Журналы
- Радиомир
Радиоаматор
Радиолоцман
Радиолюбитель
Радиоежегодник
Радиоконструктор
Учебные материалы
- Математический анализ
Теория вероятностей
РТ цепи и сигналы
Радиоавтоматика
Метрология
ОКиТПРЭС
Гуманитарные науки
Электроника
Цифровые устройства и МП
Электродинамика и РРВ
Схемотехника
УГиФС и РПДУ
Основы теории скрытности
Устройства СВЧ и антенны
УПиОС и РПУ
ЭПУ РЭС
Оптические устройства
ОКПиМРЭС
ССПРЭУС
РТС и СТРТС
СИТ
Телевидение и видеотехника
Разное
Документация
Микросхемы
- 140
143
148
153
154
155
Разъёмы
- Типы разъёмов
Распиновка разъёмов
Datasheets
- Analog Devices
Atmel
Microchip
NXP Semiconductors
Texas Instruments
Маркировка компонентов
Конденсаторы с переменной емкостью
Изначально людям хватало описанных выше конденсаторов из пары пластин. Затем этот прибор получил своё развитие. Начали появляться устройства в виде шаров, дисков и цилиндров. Это было необходимо для того, чтобы повысить ёмкость конденсатора C, ведь она в первую очередь связана с площадью обкладок S и расстоянием между ними d. Это наглядно видно из формулы. По ней выполняется расчёт ёмкости конденсатора.
Ёмкость конденсатора
Эти нестандартные геометрические формы со временем перестали удовлетворять потребностям экспериментаторов. Поэтому были разработаны новые приборы с переменной ёмкостью. Они имеют подвижные пластины. Это позволяет легко менять площадь их взаимного пересечения, тем самым влияя на величину ёмкости конденсатора. Самый распространённый и всем знакомый пример данного электронного прибора – это колебательный контур в радио. Все люди хотя бы раз подстраивали приёмник. Именно эта «крутилка» есть переменный конденсатор. При ее вращении изменяется ёмкость, соответственно, резонансная частота колебательного контура радиоприёмника. Это, в свою очередь, настраивает радио на другую станцию.
Внешний вид переменного конденсатора
Цифровая маркировка конденсаторов онлайн калькулятор
- Главная
- Форум
- Новости
- Блог
- Почта
- Обратная связь
- Ссылки
- Сотрудничество
- Авторам
- Вебмастерам
Расчёты онлайн
- Калькулятор номинала SMD резистора
Генератор символов для LCD HD44780
Расчёт делителя напряжения
Определение сопротивлений резисторов по цветовой маркировке
Расчёт сопротивления резистора для светодиода
Расчёт ширины дорожки печатной платы
Цветовая маркировка резисторов, конденсаторов и индуктивностей
Расчёт резонансной частоты колебательного контура
Калькулятор фьюзов AVR
Расчёт DC-DC преобразователя на базе MC34063A
Расчёт частоты таймера 555
Расчёт линейного стабилизатора
Конвертер даты и времени в UNIX формат и обратно
Cхемы
Цифровые устройства
- Автоматика
Программаторы
Таймеры, часы, счётчики
Для ПК
Для дома
Игрушки
Аналоговые устройства
- Передатчики и приёмники
Генераторы
Усилители
Видео и ТВ
Регуляторы
Звукотехника
- Усилители
Фильтры, эквалайзеры
Для музыкантов
Акустика
Разное
Светотехника
- Мигалки
Освещение
Светоэффекты
Детектирование
- Металлоискатели
Измерения
- Осциллографы
Измерители L-C-R
Вольт/Амперметры
Термометры
Питание
- Блоки питания
Преобразователи и ИБП
Зарядные устройства
Альтернативная энергетика
Arduino
Авто и мото
Станки с ЧПУ
Статьи
Антенны
- WI-FI
Обучалка
- Аналоговая техника
Цифровая техника
Микроконтроллеры
Аудиотехника
Видеотехника
Программные пакеты
Измерения
Разное
Секреты самодельщика
Файлы
Программы
- CADs
Компиляторы, программаторы
Для печатных плат
Схемы, панели и шкалы
Расчёты
Разное
Книги
- Verilog и VHDL
Цифровые устройства и МП
Математический анализ
Основы теории цепей
Теория вероятностей
РТ цепи и сигналы
Метрология
Микроконтроллеры
Программирование
Справочники
Схемотехника
Устройства СВЧ и антенны
РПДУ и УГФС
РПУ и УПиОС
РТС и СТРТС
Телевидение и видеотехника
Журналы
- Радиомир
Радиоаматор
Радиолоцман
Радиолюбитель
Радиоежегодник
Радиоконструктор
Учебные материалы
- Математический анализ
Теория вероятностей
РТ цепи и сигналы
Радиоавтоматика
Метрология
ОКиТПРЭС
Гуманитарные науки
Электроника
Цифровые устройства и МП
Электродинамика и РРВ
Схемотехника
УГиФС и РПДУ
Основы теории скрытности
Устройства СВЧ и антенны
УПиОС и РПУ
ЭПУ РЭС
Оптические устройства
ОКПиМРЭС
ССПРЭУС
РТС и СТРТС
СИТ
Телевидение и видеотехника
Разное
Документация
Микросхемы
- 140
143
148
153
154
155
Разъёмы
- Типы разъёмов
Распиновка разъёмов
Datasheets
- Analog Devices
Atmel
Microchip
NXP Semiconductors
Texas Instruments
Маркировка компонентов
Расчет гасящего конденсатора для светодиода
Разберем подробный расчет, ниже сможете найти форму онлайн калькулятора.
Расчет емкости конденсатора для светодиода:
С(мкФ) = 3200 * Iсд) / √(Uвх² — Uвых²)
С мкФ – ёмкость конде-ра. Он должен быть рассчитан на 400-500В;Iсд – номинальный ток диода (смотрим в паспортных данных);Uвх – амплитудное напряжение сети — 320В;Uвых – номинальное напряжение питания LED.
Можно встретить еще такую формулу:
C = (4,45 * I) / (U — Uд)
Она используется для маломощных нагрузок до 100 мА и до 5В.
Подключение одного светодиода
Для расчета емкости конде-ра нам понадобится:
- Максимальный ток диода – 0,15А;
- напряжение питания диода – 3,5В;
- амплитудное напряжение сети — 320В.
Для таких условий параметры конде-ра: 1,5мкФ, 400В.
Подключение нескольких светодиодов
При расчете конденсатора для светодиодной лампы необходимо учитывать, что диоды в ней соединены группами.
- Напряжение питания для последовательной цепочки – Uсд * количество LED в цепи;
- сила тока – Iсд * количество параллельных цепочек.
Для примера возьмём модель с шестью параллельными линиями из четырёх последовательных диодов.
Напряжение питания – 4 * 3,5В = 14В; Сила тока цепи – 0,15А * 6 = 0,9А;
Для этой схемы параметры конде-ра: 9мкФ, 400В.
Электроемкость
Электроемкость плоского конденсатора
Этим термином характеризуют накопительные способности пассивного элемента. В обозначениях серийных изделий указывают номинальное значение. Так как базовая единица (Ф, фарад) слишком велика, пользуются уменьшительными приставками для обозначения часто применяемых электронных компонентов:
- миллифарад (мФ) – 10-3 Ф;
- нанофарад (нФ) – 10-9 Ф;
- пикофарад (пФ) – 10-12 Ф.
Один фарад соответствует емкости, при которой накопленный единичный заряд (1Кл) создаст разницу потенциалов на пластинах 1 В.
Как рассчитать емкость конденсатора
Расчеты, производимые с помощью онлайн калькулятора, позволяют вычислить емкость конденсатора в течение нескольких секунд. Кроме этого параметра, можно определить показатели заряда, мощности, тока, энергии и прочих качеств конденсатора, необходимых в конкретном устройстве.
Наиболее часто встречаются электролитические конденсаторы, применяемые в схеме асинхронного электродвигателя. Конструкции этих устройств могут быть полярными или неполярными. В первом случае отмечается более высокая емкость, поэтому перед подключением конденсатора к двигателю, необходимо в обязательном порядке выполнить расчеты. С помощью проводимых вычислений устанавливается необходимая емкость, соответствующая конкретному двигателю.
Особое значение придается дополнительным расчетам при эксплуатации трехфазных электродвигателей. В обычном режиме конденсатор функционирует нормально, однако при включении в однофазную сеть, его емкость заметно снижается. Это приводит к увеличению частоты вращения вала. Предварительные расчеты и правильное подключение позволяют избежать подобных ситуаций.
При запуске асинхронного двигателя, работающего от напряжения 220 вольт, требуется конденсатор с высокой емкостью. В связи с этим, невозможно обойтись без проведения расчетов с помощью онлайн калькулятора. Проведение расчетов полностью зависит от способа соединения обмоток электродвигателя. Данное соединение может быть выполнено двумя способами – звездой и треугольником. В первом случае применяется формула Ср=2800хI/U, а для второго случая используется немного измененная формула Ср=4800хI/U.
Следует учитывать, что в цепочке соединенных конденсаторов емкость пускового устройства должна быть примерно в три раза выше, чем в рабочем приборе. Для расчета применяется формула Сп=2.5хСр, в которой Сп и Ср являются соответственно пусковым и рабочим конденсатором.
Цифровая маркировка конденсаторов онлайн калькулятор
- Главная
- Форум
- Новости
- Блог
- Почта
- Обратная связь
- Ссылки
- Сотрудничество
-
- Авторам
- Вебмастерам
- Расчёты онлайн
-
- Калькулятор номинала SMD резистора
- Генератор символов для LCD HD44780
- Расчёт делителя напряжения
- Определение сопротивлений резисторов по цветовой маркировке
- Расчёт сопротивления резистора для светодиода
- Расчёт ширины дорожки печатной платы
- Цветовая маркировка резисторов, конденсаторов и индуктивностей
- Расчёт резонансной частоты колебательного контура
- Калькулятор фьюзов AVR
- Расчёт DC-DC преобразователя на базе MC34063A
- Расчёт частоты таймера 555
- Расчёт линейного стабилизатора
- Конвертер даты и времени в UNIX формат и обратно
- Cхемы
- Цифровые устройства
-
- Автоматика
- Программаторы
- Таймеры, часы, счётчики
- Для ПК
- Для дома
- Игрушки
- Аналоговые устройства
-
- Передатчики и приёмники
- Генераторы
- Усилители
- Видео и ТВ
- Регуляторы
- Звукотехника
-
- Усилители
- Фильтры, эквалайзеры
- Для музыкантов
- Акустика
- Разное
- Светотехника
-
- Мигалки
- Освещение
- Светоэффекты
- Детектирование
- Измерения
-
- Осциллографы
- Измерители L-C-R
- Вольт/Амперметры
- Термометры
- Питание
-
- Блоки питания
- Преобразователи и ИБП
- Зарядные устройства
- Альтернативная энергетика
- Arduino
- Авто и мото
- Станки с ЧПУ
- Статьи
- Антенны
- Обучалка
-
- Аналоговая техника
- Цифровая техника
- Микроконтроллеры
- Аудиотехника
- Видеотехника
- Программные пакеты
- Измерения
- Разное
- Секреты самодельщика
- Файлы
- Программы
-
- CADs
- Компиляторы, программаторы
- Для печатных плат
- Схемы, панели и шкалы
- Расчёты
- Разное
- Книги
-
- Verilog и VHDL
- Цифровые устройства и МП
- Математический анализ
- Основы теории цепей
- Теория вероятностей
- РТ цепи и сигналы
- Метрология
- Микроконтроллеры
- Программирование
- Справочники
- Схемотехника
- Устройства СВЧ и антенны
- РПДУ и УГФС
- РПУ и УПиОС
- РТС и СТРТС
- Телевидение и видеотехника
- Журналы
-
- Радиомир
- Радиоаматор
- Радиолоцман
- Радиолюбитель
- Радиоежегодник
- Радиоконструктор
- Учебные материалы
-
- Математический анализ
- Теория вероятностей
- РТ цепи и сигналы
- Радиоавтоматика
- Метрология
- ОКиТПРЭС
- Гуманитарные науки
- Электроника
- Цифровые устройства и МП
- Электродинамика и РРВ
- Схемотехника
- УГиФС и РПДУ
- Основы теории скрытности
- Устройства СВЧ и антенны
- УПиОС и РПУ
- ЭПУ РЭС
- Оптические устройства
- ОКПиМРЭС
- ССПРЭУС
- РТС и СТРТС
- СИТ
- Телевидение и видеотехника
- Разное
- Документация
- Микросхемы
-
- 140
- 143
- 148
- 153
- 154
- 155
- Разъёмы
-
- Типы разъёмов
- Распиновка разъёмов
- Datasheets
-
- Analog Devices
- Atmel
- Microchip
- NXP Semiconductors
- Texas Instruments
- Маркировка компонентов
Определение ёмкости конденсатора по цифровой маркировке
Цифровая маркировка на малогабаритных конденсаторах чаще всего она встречается виде трёх цифр.
Первые две из них определяют ёмкость в единицах пФ, третья цифра соответствует количеству нулей. Если конденсатор имеет ёмкость меньше 10 пФ, последней цифрой может быть «9». При емкостях меньше 1 пФ первая цифра может быть «0». Буквенное разделение с помощью «R» используется в качестве десятичной запятой. Например, код 020 равен 2.0 пФ, код 0R3 — 0.3 пФ. На ряду с трёхзнаковым цифровым обозначением широко используется и четырёхзнаковое, в этом варианте первые три цифры обозначают ёмкость в пФ, а последняя цифра количество нулей.Маркировка ёмкости в микрофарадах.
Вместо десятичной точки может ставиться буква «R».Смешанная, буквенно-цифровая маркировка ёмкости, допуска, ТКЕ, рабочего напряжения.
В отличие от первых трёх параметров, которые маркируются в соответствии со стандартами, рабочее напряжение у разных фирм имеет различную буквенно-цифровую маркировку. Если в конце кода стоит буква — это допуск. Он совпадает с допуском резисторов.
Принцип действия конденсатора
Для начала разберемся, зачем вообще нужен конденсатор. Представить современные электронные приборы от простейшего блока питания до сложнейших вычислительных систем без этого устройства сегодня просто невозможно.
Оно является своеобразным аккумулятором небольшой емкости, способным накапливать и моментально отдавать заряд в случае кратковременного отключения напряжения или его просадке. Существуют также конденсаторы, предназначенные для фильтрования частот, как низких, так и высоких, подавления помех, сглаживания скачков напряжения, повышения коэффициента мощности и пр.
Конденсаторы имеют два вывода-полюса – плюсовое (+) и минусовое (-). Они представляют собой металлические пластины, на которых скапливаются положительные и отрицательные заряды.
Между ними размещают диэлектрик (стекло, картон, дерево и пр.), не позволяющий замкнуть цепь. Часто для увеличения емкости полюса изготавливают не в виде пластин, а в форме спиралей или сфер.
Почему электролитические конденсаторы выходят из строя и что делать
Зачастую, чтобы отремонтировать вышедшую из строя электронную технику, достаточно найти и заменить вздувшиеся конденсаторы. Дело в том, что срок жизни их небольшой — 1000-2000 тысячи рабочих часов. Потом он обычно выходит из строя и требуется его замена. И это при нормальном напряжении не выше номинального. Так происходит потому, что диэлектрик в конденсаторах, чаще всего, жидкий. Жидкость понемногу испаряется, меняются параметры и, рано или поздно, конденсатор вздувается.
Электролитические конденсаторы имеют специальные насечки на верхушке корпуса, чтобы при выходе из строя избежать взрыва
Высыхает электролит не только во время работы. Даже просто «от времени». Это конструктивная особенность электролитических конденсаторов. Поэтому не стоит ставить выпаянные из старых схем конденсаторы или те, которые несколько лет (или десятков лет) хранятся в мастерской. Лучше купить «свежий», но проверьте дату производства.
Можно ли продлить срок эксплуатации конденсаторов? Можно. Надо улучшить теплоотвод. Чем меньше греется электролит, тем медленнее высыхает. Поэтому не стоит ставить аппаратуру вблизи отопительных приборов.
Для улучшения отвода тепла ставят радиаторы
Второе — надо следить за тем, чтобы хорошо работали кулера. Третье — если рядом стоят детали, которые активно греются во время работы, надо конденсаторы каким-то образом от температуры защитить.
Как подобрать замену
Если часто приходится менять один и тот же конденсатор, его лучше заменить на более «мощный» — той же ёмкости, но на большее напряжение. Например, вместо конденсатора на 25 вольт, поставить конденсатор на 35 вольт. Только надо иметь в виду, что более мощные конденсаторы имеют большие размеры. Не всякая плата позволяет сделать такую замену.
Конденсатор той же ёмкости, но рассчитанный на большее напряжение, имеет больший размер
Можно поставить параллельно несколько конденсаторов с тем же напряжением, подобрав номиналы так, чтобы получить требуемую ёмкость. Что это даст? Лучшую переносимость пульсаций тока, меньший нагрев и, как следствие, более продолжительный срок службы.
Что будет, если поставить конденсатор большей ёмкости?
Часто приходит в голову идея поставить вместо сгоревшего или вздувшегося конденсатор большей ёмкости. Ведь он должен меньше греться. Так, во всяком случае, кажется. Ёмкость практически никак не связана со степенью нагрева корпуса. И в этом выигрыша не будет.
Устройство электролитического конденсатора
По нормативным документам отклонение номинала конденсаторов допускается в пределах 20%. Вот на эту цифру можете спокойно ставить больше/меньше. Но это может привести к изменениям в работе устройства. Так что лучше найти «родной» номинал. И учтите, что не всегда можно ставить большую ёмкость. Можно если конденсатор стоит на входе и сглаживает скачки питания. Вот тут большая ёмкость уместна, если для её установки достаточно места. Это точно нельзя делать там, где конденсатор работает как фильтр, отсекающий заданные частоты.
Можно менять на ту же ёмкость, но чуть более высокое напряжение. Это имеет смысл. Но размеры такого конденсатора будут намного больше. Не в любую плату получится его установить. И учтите, что корпус его не должен соприкасаться с другими деталями.
Где и для чего используются
Как уже говорили, сложно найти схему без конденсаторов. Их применяют для решения самых разных задач:
- Для сглаживания скачков сетевого напряжения. В таком случае их ставят на входе устройств, перед микросхемами, которые требовательны к параметрам питания.
-
Для стабилизации выходного напряжения блоков питания. В таком случае надо искать их перед выходом.
Часто можно увидеть электролитические цилиндрические конденсаторы
- Датчик прикосновения (тач-пады). В таких устройствах оной из «пластин» конденсаторов является человек. Вернее, его палец. Наше тело обладает определённой проводимостью. Это и используется в датчиках прикосновения.
- Для задания необходимого ритма работы. Время заряда конденсаторов разной ёмкости отличается. При этом цикл заряд/разряд конденсатора остаётся величиной постоянной. Это и используется в цепях, где надо задавать определённый ритм работы.
- Ячейки памяти. Память компьютеров, телефонов и других устройств — это огромное количество маленьких конденсаторов. Если он заряжен — это единица, разряжен — ноль.
- Есть стартовые конденсаторы, которые помогают «разогнать» двигатель. Они накапливают заряд, потом резко его отдают, создавая требуемый «толчок» для разгона мотора.
- В фотовспышках. Принцип тот же. Сначала накапливается заряд, затем выдаётся, но преобразуется в свет.
Конденсаторы встречаются часто и область их применения широка. Но надо знать как правильно их подключить.
Схема подключения двигателя через конденсатор
Собственно, сама схема не очень сложная. Как в случае соединения обмоток звездой, так и в случае соединения обмоток треугольником у нас имеется только три фазных вывода, куда должны подключаться фазы «А», «В» и «С». Поскольку у нас имеется только одна фаза, то мы подключаем ее на два любых имеющихся вывода (предположим на «А» и «В»). А конденсаторы подключаем на любой из задействованных и оставшийся свободный вывод (например на «А» и «С» или на «В» и «С»). В зависимости от того, куда будет подключен конденсатор будет меняться направление вращения. То есть, для того, чтобы сменить направление вращения двигателя, достаточно поменять местами любые два провода на двигателе. Например, мы включали фазу на выводы «А» и «В», а конденсаторы на «А» и «С». То есть, если мы включим конденсаторы не на «А» и «С», а на «В» и «С», направление вращения двигателя изменится на противоположное. Теперь внимательно присмотритесь к схеме. Вы видите на ней кнопку «Разгон». А если присмотритесь еще внимательнее то увидите, что СП (пусковой конденсатор) и СР (рабочий конденсатор) по сути соединены параллельно, с тем отличием, что пусковой конденсатор мы включаем только тогда, когда нам необходимо, а именно в момент запуска. С этим разобрались, идем дальше.
Как подключить пусковой и рабочий конденсаторы
На рисунке указана простейшая схема подключения пускового и рабочего элементов. Первый из них устанавливается сверху, а второй – снизу. Одновременно к двигателю подключается кнопка включения и выключения. Самое главное – внимательно разобраться с проводами, чтобы не перепутать концы.
Данная схема позволяет выполнить предварительную проверку с неточной прикидкой. Она же используется и после окончательного выбора наиболее оптимального значения.
Такой подбор осуществляется экспериментальным путем с использованием нескольких конденсаторов разной емкости. При параллельном подключении их суммарная мощность будет увеличиваться. В это время нужно контролировать работу двигателя. Если работа устойчивая и ровная, в этом случае можно покупать конденсатор с емкостью, равной сумме емкостей проверочных элементов.
Как подключить трехфазный двигатель к однофазной сети
Как подключить трехфазный двигатель к сети 220 вольт
Как переделать трехфазный двигатель для подключения в однофазную сеть
Подключение трехфазного двигателя к однофазной сети
Подключение трехфазного двигателя к трехфазной сети
Онлайн расчет конденсатора для двигателя